摘要 - 在移动医疗保健和远程诊断中,核分割是病理分析,诊断和分类的关键步骤,需要实时处理和高准确性。然而,核大小,模糊轮廓,不均匀染色,细胞聚类和重叠的细胞的变化阻碍了精确的分割。此外,现有的深度学习模型通常以增加复杂性的成本优先考虑准确性,从而使其不适合资源有限的边缘设备和现实世界部署。为了解决上述问题,我们提出了一个边缘感知的双分支网络,用于核实例分割。网络同时预测目标信息和目标轮廓。在网络中,我们提出了一个上下文融合块(CF-block),该融合块有效地从网络中提取和合并了上下文信息。加法 - 我们引入了一种后处理方法,该方法结合了目标信息和目标轮廓,以区分重叠的核并生成实例分割图像。进行了广泛的定量评估,以评估我们方法的性能。实验结果表明,与BNS,Monuseg和CPM-17数据集的最新方法相比,该方法的出色性能。索引术语 - 努塞鲁斯细分,移动医疗保健,实体细分,医学成像,双支分支网络
摘要。最近在大量数据的基础模型中表现出了广泛的计算机视觉任务和应用程序领域的巨大希望。但是,对海洋领域的关注较少,相比之下,这涵盖了我们蓝色星球的大多数。标记数据的稀缺性是最受阻碍的问题,海洋照片说明了与一般空中图像的外观和内容的明显不同。使用现有的基础模型进行海洋视觉分析不会产生令人满意的性能,这不仅是数据分布的变化,而且还因为现有基础模型的内在限制(例如,缺乏语义,冗余掩码生成或限于图像级别的场景理解)。在这项工作中,我们强调了了解海洋生态系统的模型和数据方法。我们介绍了MarineSt,这是一个使用实例视觉描述分析海洋领域的基础模型,该模型可为海上对象实例输出实例掩盖和字幕。to
尽管隐式神经表征 (INR) 近期取得了进展,但对于基于坐标的 INR 多层感知器 (MLP) 来说,学习跨数据实例的通用表征并将其推广至未见实例仍然具有挑战性。在这项工作中,我们为可推广的 INR 引入了一个简单而有效的框架,该框架使基于坐标的 MLP 能够通过仅调节早期 MLP 层中的一小组权重作为实例模式组合器来表示复杂数据实例;其余 MLP 权重学习跨实例通用表示的模式组合规则。我们的可推广 INR 框架与现有的元学习和超网络完全兼容,可用于学习预测未见实例的调节权重。大量实验表明,我们的方法在音频、图像和 3D 对象等广泛领域都实现了高性能,而消融研究验证了我们的权重调节。
脑肿瘤分割是医学图像分析中对于患者准确诊断和治疗的关键步骤。传统的肿瘤分割方法通常需要大量的手动操作,并且容易出现差异。在本研究中,我们提出了一种使用 Mask R-CNN 进行脑肿瘤分割的自动化方法,Mask R-CNN 是一种最先进的深度学习实例分割模型。我们的方法利用 MRI 图像来高精度地识别和描绘脑肿瘤。我们在带注释的 MRI 图像数据集上训练了 Mask R-CNN 模型,并使用平均精度 (mAP) 指标评估了其性能。结果表明,我们的模型实现了 90.3% 的高 mAP,表明其在准确分割脑肿瘤方面的有效性。这种自动化方法不仅减少了肿瘤分割所需的手动操作,而且还提供了一致可靠的结果,有可能改善临床结果。
1.将光能转化为电能和/或氢的装置,包括反应器,其中反应器包括阳极隔室(2),阳极隔室包括阳极材料和阴极隔室,阳极隔室包括a)能够氧化电子供体化合物的阳极嗜性微生物,和b)能够通过光合作用将光能转化为电子供体化合物的活植物(7)或其部分,其中植物的根部(8)区域基本上位于阳极材料中。11.将光能转化为电能和/或氢的方法,其中将原料引入包括反应器的装置中,反应器包括阳极隔室(2)和阴极隔室,阳极隔室包括a)能够氧化电子供体化合物的阳极嗜性微生物,和b)能够通过光合作用将光能转化为电子供体化合物的活植物(7)或其部分,其中微生物生活在植物的根部(8)区域或其部分的周围。 12.根据权利要求11的方法,其中电子给体化合物是有机化合物。
摘要:事件摄像机是一种新型图像传感器。这些传感器的像素彼此独立地和彼此独立运行。传感器输出是一个可变的速率数据流,该数据流在时空上编码亮度变化的检测。这种类型的输出和传感器操作范例为计算机视觉应用构成了处理的处理,因为基于框架的方法并非本地适用。我们在基于事件的室外监视的背景下,对不同最新的基于深度学习的实例分割方法进行了首次系统评估。用于处理,我们考虑将事件输出流转换为不同维度(包括点,体素和基于框架的变体)的表示。我们介绍了一个新的数据集变体,该变体在每个输出事件的实例级别以及基于密度的预处理以生成感兴趣的区域(ROI)。实现的实例分割结果表明,基于事件的域的现有算法的适应是一种有希望的方法。
摘要 — 近年来,病理诊断通过将深度学习模型与使用全切片图像 (WSI) 的多实例学习 (MIL) 框架相结合而取得了优异的表现。然而,WSI 的千兆像素特性对高效的 MIL 提出了巨大挑战。现有研究要么不考虑实例之间的全局依赖关系,要么使用线性注意等近似值来建模对对实例交互,这不可避免地带来了性能瓶颈。为了应对这一挑战,我们提出了一个名为 MamMIL 的框架用于 WSI 分析,通过将选择性结构化状态空间模型(即 Mamba)与 MIL 相结合,能够在保持线性复杂度的同时对全局实例依赖关系进行建模。具体而言,考虑到 WSI 中组织区域的不规则性,我们将每个 WSI 表示为一个无向图。为了解决 Mamba 只能处理一维序列的问题,我们进一步提出了一种拓扑感知扫描机制来序列化 WSI 图,同时保留实例之间的拓扑关系。最后,为了进一步感知实例之间的拓扑结构并结合短程特征交互,我们提出了一种基于图神经网络的实例聚合块。实验表明,MamMIL 可以实现比最先进的框架更先进的性能。代码可以在 https://github.com/Vison307/MamMIL 访问。索引术语 — 多实例学习、状态空间模型、整个幻灯片图像
近年来,深度学习方法因其解决复杂任务的能力而变得无处不在。然而,这些模型需要庞大的数据集才能进行适当的训练和良好的泛化。这意味着需要很长的训练和微调时间,对于最复杂的模型和大型数据集,甚至需要几天的时间。在这项工作中,我们提出了一种新颖的量子实例选择 (IS) 方法,该方法可以显着减少训练数据集的大小(最多 28%),同时保持模型的有效性,从而提高(训练)速度和可扩展性。我们的解决方案具有创新性,因为它利用了一种不同的计算范式——量子退火 (QA)——一种可用于解决优化问题的特定量子计算范式。据我们所知,之前还没有尝试使用 QA 解决 IS 问题。此外,我们针对 IS 问题提出了一种新的二次无约束二元优化公式,这本身就是一项贡献。通过对多个文本分类基准进行大量实验,我们通过经验证明了我们的量子解决方案的可行性和与当前最先进的 IS 解决方案的竞争力。
无监督的域适应性(UDA)是解决域转移问题的有效方法。特别是UDA方法试图对齐源和目标代表,以改善对目标域的概括。,UDA方法在适应过程中可以访问源数据的假设下起作用。但是,在实际情况下,由于隐私法规,数据传输限制或专有数据关注,标记的源数据通常受到限制。源 - 自由域适应(SFDA)设置旨在通过对目标域进行源训练的模型来减轻这些问题,而无需访问源数据。在本文中,我们探讨了自适应对象检测任务的SFDA设置。为此,我们提出了一种新颖的培训策略,以使源训练的对象将对象降低到目标域而没有源数据。更重要的是,我们通过利用给定目标域输入的对象关系来设计一种新颖的对比损失,以增强目标表示形式。这些对象实例关系是使用实例关系图(IRG)网络建模的,然后将其用于指导对比度代表学习。此外,我们还利用学生教师将知识从源训练的模型提高到目标域。对多个OB-JECT检测基准数据集进行了广泛的实验表明,所提出的方法能够有效地适应源训练的对象检测器对目标域,超过了最先进的域自适应检测方法。代码和模型在https://viudomain.github.io/irg-sfda-web/中提供。
摘要。我们为开放世界实例(OWIS)提出了一种方法,该任务旨在通过从训练过程中的一组有限的带注释的对象类中概括图像中的任意未知的观察。我们的细分对象系统(SOS)明确地解决了最先进系统的概括能力和低精度,这些系统通常会生成背景检测。为此,我们基于基础模型SAM [27]生成了高质量的伪注释。我们彻底研究了各种对象先验,以引起SAM的提示,并明确将基础模型集中在观察上。最强的物体先验是通过自我监督视觉变压器的自我发项图获得的,我们用来促使SAM。最后,SAM的后处理片段用作伪注释来训练标准实例分割系统。我们的方法在可可,LVI和ADE20K数据集上显示出强大的概括能力,并且与最先进的方法相比,精度提高了高达81.6%。源代码可用:https://github.com/chwilms/sos