抽象目的:这项研究的目的是研究使用细胞化学方法的特发性不育男性中的精子DNA完整性与常规精液参数之间的关系。方法:通过使用酸性苯胺蓝色染色来评估精子DNA的完整性,指定核染色质凝结和TUNEL方法鉴定了40个特发性不育男性中的精子DNA断裂。涂片上的精子头被计为Tunel+和苯胺蓝+,显示了精子DNA损伤。这些发现用于确定鲁丁精液参数与精子DNA完整性测试结果之间的相关性。结果:苯胺蓝+染色的百分比与精子形态和进行性运动之间存在显着的负相关。和在TUNEL+染色的百分比与正常形态和进行性运动性(P <0.01)之间观察到了负相关,在这些相关性与精子浓度和精子总运动性方面没有相关性。结论:诸如酸性苯胺蓝色和TUNEL之类的方法可以显示出独立于常规精液参数的精子的结构缺陷。尽管这些方法与某些精液参数相关,但它们特别适用于特发性不育患者组,可能会对辅助生殖技术的成功产生积极贡献。关键字:精子,染色质冷凝,DNA碎片,tunel,苯胺蓝
结果:Prelp − / − 小鼠表现出神经炎症和神经血管完整性降低,导致小脑和皮质中 IgG 和葡聚糖渗漏。Prelp − / − 小鼠的组织学分析显示血脑屏障的细胞间完整性降低,周细胞和星形胶质细胞末端的毛细血管附着降低。RNA 测序分析发现 Prelp − / − 小鼠的细胞间粘附和炎症受到影响,基因本体分析以及基因集富集分析表明炎症相关过程和粘附相关过程(如上皮-间质转化和顶端连接)受到显著影响,表明 PRELP 是细胞间粘附的调节剂。免疫荧光分析表明,Prelp − / − 小鼠神经血管中钙粘蛋白、claudin-5 和 ZO-1 的粘附连接蛋白表达水平受到抑制。此外,体外研究表明,PRELP 应用于内皮细胞可增强细胞间完整性,诱导间充质-内皮转化并抑制 TGF-β 介导的细胞间粘附损伤。
• 该项目的法律、监管、道德和程序考虑因素是什么? • 我是否需要获得道德批准才能使用此数据和工具? • 我是否获得同意和批准以这种方式使用数据? • 谁有权访问我与此工具共享的数据? • 数据存储在哪里以及存储多长时间? • 使用此工具可能存在哪些更广泛的问题或风险? • 研究设计是否解决了数据完整性和有效性问题?
布里斯班 All Hallows' School 教学与学习主任 Scott Adamson 分享了学校应对这种“界限”和使用生成式 AI 工具的方法。他认为,要让学生为充满技术的世界做好准备,就必须关注这项技术的关键用途。其中的核心是为教师提供学校指导和支持。Adamson 先生说,这意味着在学校踏上合作之旅时要采取一种适应性强且灵活的方法。他说,通过这一旅程,学生们相信他们被引导以适当和合乎道德的方式使用生成式 AI。
在可评估活动中非法、不诚实或未经授权使用 GenAI 被视为应受谴责的态度,大学对此表示谴责,必须予以制裁。评估这些案件的方式将取决于学生行为的严重程度。为了衡量这种严重性,必须考虑几个因素,包括可评估活动的类型(无论是正在进行的评估的一部分、受试者的最终活动还是 TFG 或 TFM)、非法使用 GenAI 的程度(无论是简短摘录、活动的很大一部分还是整个作业)以及使用 GenAI 的方式(引用不当或意外错误或偶然错误,学生声称某项活动是他们的,但实际上并非如此)。
使用三步方法评估了pH对DNA完整性的影响。该彗星测定在整个基因组水平上使用,具有三种不同的方案:中性(无碱性释放),Flash(pH 12.5,带有2.5分钟的放松)和常规的碱性方案(pH> 13具有40分钟的放松)。然后使用实时定量PCR(RT-QPCR)研究分离的DNA,表明基因扩增随pH值的增加而降低,表明DNA降解。专门设计的分子信标被用于检查分子水平的DNA,有或没有碱性位点(ALS)插入。在pH 12.5时,ALS发夹中的荧光在30分钟后开始增加,而在pH> 13时,在5分钟后已经观察到这种增加,表明DNA链断裂显着增加。还使用了液相色谱分析,恶魔表明,即使在1小时暴露1小时后,发夹仍保持完整直至pH 10,而在pH 12.5时,部分转化为链断裂,在30分钟后发生。在pH> 13时,发夹几乎在30分钟后几乎完全降解。闪存方案有效检测DNA单链断裂,并在pH 12.5时碱性处理2.5分钟后确定了这些损害。将发夹暴露于pH 12.5持续60分钟时,ALS转化为链断裂,证明了这种方法检测DNA结构变化的敏感性。这些发现表明,与更接近中性的条件相比,pH对DNA完整性构成了重大风险,导致DNA损伤的背景损害水平明显更高。我们的研究证明了了解pH对DNA稳定性的影响的重要性,并提供了对与碱性环境相关的风险的见解,尤其是在pH> 13。
含有假定的 G-四链体形成序列的寡核苷酸(PQS;G ≥ 3 N x G ≥ 3 N x G ≥ 3 N x G ≥ 3)在阳离子存在下的生理缓冲条件下(Bochman 等人,2012 年)。由于其高热力学稳定性,组装的 G4 需要通过酶促分解。已经开发出体外用于监测 G4 形成的方法(Balasubramanian 等人,2011 年;Bryan 和 Baumann,2011 年)。使用这些方法已经证明了分解 G4 的酶活性。这些酶包括具有 G4 结合和解旋活性的 DNA 解旋酶,例如 BLM、WRN、PIF1、FANCJ、XPD、DNA2 和 RTEL1(Bochman 等人,2012 年;Maizels,2015 年)。使用计算机分析或荧光成像、免疫沉淀或 pull-down 实验来预测体内 G4 的形成,使用有价值的工具 - 例如特异性识别 G4 的免疫球蛋白和单链可变片段 (scFv) (Henderson 等人,2013)、G4 结合化合物 (Mendoza 等人,2016) 或 G4 结合蛋白 (Maizels,2015)。使用这些工具,可以通过免疫沉淀或针对纯化的基因组 DNA 或染色质的 pull-down 来识别 G4 位点,并且这些位点中的很大一部分重现了 PQS (Chambers 等人,2015;Hänsel-Hertsch 等人,2016;Lam 等人,2013;Muller 等人,2010)。 PQS 在基因的调控区(例如启动子、内含子或非翻译区 [UTR])中过度表达,包括致癌基因、重复区(例如端粒和 rDNA)和复制起点 (Maizels & Gray, 2013 )。使用抗体在人类细胞中进行的全基因组 G4 映射揭示了 G4 存在于基因调控区和端粒中 (Hänsel-Hertsch et al., 2016 ; Liu et al., 2016 )。许多 G4 被映射在转录起始位点周围,G4 形成的频率与相应基因的转录水平呈正相关 (Spiegel et al., 2021 ; Zheng et al., 2020 )。使用抗体对 G4-DNA 进行荧光标记,显示细胞核或染色体上存在颗粒状信号;一些信号位于端粒或着丝粒上 (Biffi et al., 2013; Henderson et al., 2013)。使用荧光标记化合物对 G4- DNA 进行可视化,可显示位于核仁中的较大信号,以及位于细胞核中的一些较小信号 (Rodriguez et al., 2012),或整个细胞核中均匀分布的信号 (Shivalingam et al., 2015)。然而,人们对使用体内成像获得的许多未表征信号的亚细胞或基因组位置了解甚少。越来越多的证据表明,在基因体内或周围形成的 G4 通过促进或抑制转录来调节基因活性 (Bochman et al., 2012; Mendoza et al., 2016)。尽管具有这些生物学含义,但 G4 在空间上阻碍了 DNA 复制和转录 (Bochman et al., 2012; Maizels, 2015)。这些生物事件的拖延会增加基因毒性损害的风险;G4 结构清除不足可能
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年8月3日。 https://doi.org/10.1101/2023.08.01.551420 doi:biorxiv Preprint
EIU 学生行为准则规定,“东区学生遵守学术诚信的最高原则,并支持有利于学术研究的校园环境。” 违反此标准的行为包括“破坏学术标准的行为,例如考试作弊、抄袭、串通、虚假陈述或伪造数据。” 本文件的目的是通过承认人工智能 (AI) 工具可能对学术诚信造成新的挑战,但也可能增强教师的教学能力和学生的学习和技能发展能力,指导教师如何确保这些标准。 2023 年 4 月 4 日,Turnitin 发布了其 AI 检测,作为 Turnitin Similarity 的集成部分;EIU 已在 Turnitin 中启用此功能。 Turnitin 将为其 AI 检测计算一个百分比分数,该分数表示 Turnitin 的 AI 写作检测模型确定的提交中可能由 AI 生成的合格文本的数量。此百分比不一定是整个提交内容的百分比 - 如果提交内容中的文本不被视为长篇散文,则不会包含在内。以下是有关如何解释和使用 Turnitin 的人工智能检测分数的信息,以及与学生谈论学术诚信的一些注意事项。对学术不端行为的担忧可以通过 EIU 学生主任建立的流程进行裁决。此外,建议教师提倡并建议学生使用 EIU 写作中心。虽然 Turnitin 和其他工具可以帮助识别学生写作和课程提交中的潜在问题,但 EIU 写作中心提供训练有素的咨询人员,以面对面或在线的方式进行个人会议,并贯穿从草稿到最终提交的整个写作过程。____________________________________________________________________________
1开发,老化和再生计划,遗传疾病与衰老研究中心,桑福德·伯纳姆·普雷比斯医学发现研究所,美国圣地亚哥; 2美国圣地亚哥医学院桑福德再生医学联盟生物工程系; 3美国罗切斯特梅奥诊所的心血管遗传学研究实验室; 4美国罗切斯特梅奥诊所定量健康科学系计算生物学系; 5美国圣地亚哥的拉迪医院MC 5004儿科医学院儿科医学院; 6美国罗切斯特市梅奥诊所分子和药理学系儿科和青少年医学系儿科心脏病学再生医学中心,分子与药理学系和实验治疗师; 7儿科和青少年医学系心血管医学系,心血管遗传学研究实验室,美国罗切斯特梅奥诊所