不同电池化学成分的电池堆压力也不同,它对电池的成功化成也至关重要。在初始化成循环期间,均匀的固体电解质界面 SEI 的形成对电池循环寿命起着重要作用,而最佳电池堆压力 2,6 则高度依赖于此。如果压力不足,会导致颗粒和电解质之间的固体电解质界面增厚,从而中断电池中的电传输,导致功率和容量降低。未优化的压力施加设备还会导致颗粒级变形,这将在化成和长期循环后逐渐导致软包电池内部应力的累积,从而缩短循环寿命并增加容量衰减 1013 。
RNA 样本要求:RNA 样本应不含盐(例如 Mg 2+ 或胍盐、二价阳离子螯合剂(例如 EDTA 或 EGTA)或有机物(例如苯酚或乙醇)。RNA 必须不含 DNA。gDNA 是 RNA 制备中的常见污染物。它可能来自有机提取的中间相,或者当固相 RNA 纯化方法的二氧化硅基质超载时。如果总 RNA 样本可能含有 gDNA 污染,则用 DNase I 处理样本以去除所有痕迹的 DNA(此试剂盒中不提供 DNase)。用 DNase I 处理后,应从样本中去除酶。DNase I 的任何残留活性都可能降解富集所需的寡核苷酸。可以使用苯酚/氯仿提取和乙醇沉淀从提取物中去除 DNase I。
锂离子电池由于锂库存丢失和主动材料损失之间的复杂相互作用而导致的容量消失。虽然先进的特征技术阐明了这些机制,但量化所有细胞成分的锂库存变化仍然难以捉摸。在这项工作中,我们提出了量化lnmo-gr袋细胞阴极,阳极和电解质中锂库存的创新方法,这是一种容易发生降解的高压系统。这代表了第一个定量了解完整细胞降解机制的研究。我们的结果表明,锂库存损失主要导致阳极处的固体电解质相(SEI)形成,是容量褪色背后的主要罪魁祸首。这些见解提供了对LNMO-GR降解的更深入的了解,并证明了在苛刻条件下研究锂离子电池配置中锂库存的方法的多功能性。
然而,在实现基于LLZ的ASSB的主要挑战中,具有促进电池操作的属性的阴极/LLZ界面形成,例如低界面电阻和良好的接触。因此,LLZ的densi cation采用了高于1000°C的温度下的犯罪策略,以增强其对LI金属的离子电导率和稳定性。然而,这种高温犯罪不可避免地会导致形成高电阻的电极/LLZ相间,从而导致电池较差。12,13可以通过两条路线形成阴极/LLZ接口。在第一个路径中,涉及将阴极层涂在烧结的LLZ磁盘上,LLZ在升高的温度下呈密密度密度,然后使用诸如筛网印刷和浸入等方法与阴极层涂层,并且所得的PORTODE/LLZ系统是在低温到
结构电池是多功能设备,可以同时存储能量并承载机械负载。关键成分是碳纤维,它不仅充当结构增强,而且还可以通过可逆地托管利离子作为电极。仍然对LI和碳纤维相互作用知之甚少。在这里,我们绘制了用螺旋丙烯腈纤维插入的LI插入螺旋晶纤维中的螺旋纤维纤维(AES)。我们表明,在充电/放电速率的缓慢/放电速率下,LI在纤维的横向和纵向方向上均匀分布,并且在完全放电时,所有LI实际上都被排出。以快速的速度,LI倾向于将其捕获在纤维的核心中。在某些纤维中,在固体电解质相(SEI)和纤维表面之间发现LI板。我们的发现可以指导AES分析锂离子电池的其他碳质电极材料,并用于改善结构电池的穿孔。
RNA 和蛋白质的凝聚是细胞功能的核心,对其进行编程的能力在合成生物学和合成细胞科学中将非常有价值。在这里,我们介绍了一个模块化平台,用于从定制的、可折叠和共转录组装的分支 RNA 纳米结构中设计合成 RNA 凝聚物。最多可同时形成三种正交凝聚物,并通过嵌入的荧光发光适体选择性地积累荧光团。RNA 凝聚物可以在合成细胞内表达,以产生具有可控数量和相对大小的无膜细胞器,并显示出使用选择性蛋白质结合适体捕获蛋白质的能力。可以通过引入专用的连接体构造来调节原本正交的纳米结构之间的亲和力,从而能够产生具有规定程度的相间混合和多种形态的双相 RNA 凝聚物。可编程 RNA 凝聚物的原位表达可以为生物细胞和合成细胞中功能的空间组织奠定基础。
摘要:硅 (Si) 是一种很有前途的高能量密度锂离子电池 (LIBs) 阳极材料,但其较短的日历寿命和较差的循环性能阻碍了它的大规模应用。最近的研究表明,在电解质中引入镁 (Mg) 盐可以在 Si 锂化时形成三元 Li-Mg-Si Zintl 相并改善循环性能。然而,三元 Zintl 相的形成机理及其对固体电解质中间相 (SEI) 的影响尚不清楚。在这里,我们展示了通过 Mg 涂覆 Si 阳极形成三元 Li-Mg-Si Zintl 相,其中 Mg 在沉积时扩散到 Si 膜中并在锂化过程中进一步混合。Zintl 相的存在提高了界面稳定性,改变了 SEI 的性质并提高了 Si 阳极的循环性能。这项研究为三元 Zintl 相的形成机制提供了见解,并为未来 Si 阳极的设计提供了指导。
图 1 两例 ERBB2 扩增的横纹肌肉瘤 (RMS) 的形态学、免疫组织化学 (IHC) 和遗传特征。 (A) 病例 1 中 ERBB2 扩增子范围的全基因组视图 (顶部) 和详细视图 (底部)。 (B) Circos 图描绘了 17 号染色体 (病例 1) 中的结构变异。请注意 17q 染色体臂中两个扩增子之间的交换。17q 中的两个扩增子以红色注释。 (C) IHC 显示病例 1 (左) 和病例 2 (右) 中 HER2 (ERBB2) 蛋白的细胞质表达强烈。 (D) 17 例儿童 RMS 中 ERBB2 的 mRNA 表达水平;两例 ERBB2 扩增的病例的表达值比无扩增的 RMS 高 50 倍以上。y 轴显示 log2 转换中的表达值。 (E)对病例 1 的培养细胞的间期细胞核进行荧光原位杂交 (FISH),表明扩增的序列被组织成双微体 (dmin)
摘要:基于硅(SI)的阳极由于其高理论能力(〜3600 mAh/g)而对下一代锂(Li) - 离子电池都有希望。然而,它们在第一个周期中从初始固体电解质相(SEI)形成中遭受了大量的容量损失。在这里,我们提出了一种原位预定方法,将Li金属网格直接集成到细胞组件中。一系列LI网格被设计为预先构想试剂,这些试剂适用于电池制造中的SI阳极,并自发地添加了电解质。li网格的各种孔隙率构成预定的量相当于控制预定程度。此外,图案的网格设计增强了预定的均匀性。具有优化的预定量,基于SI的原位预定型完整细胞显示150个周期的容量> 30%的能力提高。这项工作提出了一种提高电池性能的便捷预定方法。关键字:锂离子电池,预定,硅阳极
气候变化是一个紧迫的全球问题,可以通过使用电动汽车减少CO 2排放来部分解决。在这种情况下,高能和高功率密度电池至关重要。LINI 0.5 MN 1.5 O 4(LNMO)基于基于的单元在这方面吸引人,因为它满足了几种要求,但不幸的是受能力褪色的限制,尤其是在升高温度下。lnmo在〜4.7 V(vs. li + /li)下运行,其中传统的锂离子电池(LIB)电解质在热力学上不稳定。本文研究了LNMO细胞中的降解机制以及解决这些问题的各种实用策略。在第一部分中,开发了一种称为合成电荷的技术 - 伏安法(SCPV),以更好地了解某些常见电解质的氧化稳定性。第二部分着重于使用粘合剂的使用,这些粘合剂可能有可能在lnmo细胞中形成人造阴极 - 电解质相互作用。聚丙烯腈(PAN)通常被认为是氧化稳定的,但是在LNMO的工作电压下被证明会降解。研究了第二个聚合物(PAA)的第二个聚合物,用于较高的电极质量负荷,但与羧甲基纤维素(CMC)基准相比,高内部电阻导致初始放电能力较差。为了有效地减轻容量褪色,在第三部分的LNMO细胞中探索了三个不同的电解质。首先,使用了一种离子液体的电解质,1.2 M锂双(氟磺磺酰基)酰亚胺(LIFSI)在N-丙基N-甲基吡咯烷二(Fluorosulosulfonyl)Imide(Pyr 13 FSI)中被用于N-丙基-N-甲基吡咯烷二烯。X射线光电子光谱(XPS)分析表明,该电解质通过形成稳定的无机表面层来稳定电极,从而稳定电极。第二,对含硫烷的电解质的研究表明,尽管初始循环显示出较高的降解,但在电极上产生的钝化层仍能稳定循环。In a third study, tris(trimethylsilyl)phosphite (TMSPi) and lithium difluoro(oxalato)borate (LiDFOB) were investigated as electrolyte additives in a conventional electrolyte, and 1 wt.% and 2 wt.% of the additives, respectively, showed improved electrochemical performance in LNMO-graphite full cells, highlighting the role of these在正极和负电极处启用相间层的添加剂。总的来说,这些研究提供了有关界面化学对于LNMO细胞稳定运行的重要性的见解,并确定了进一步量身定制的策略。