北京石墨烯技术研究院有限公司,中国航发北京航空材料研究院,北京 100095,中国 * 电子邮件:shaojiuyan@126.com 收稿日期:2020 年 4 月 25 日 / 接受日期:2020 年 6 月 17 日/发表日期:2020 年 8 月 10 日 LiCoO 2 正极在高压操作下会发生严重的副反应和快速的容量衰减。在本研究中,通过小尺寸石墨烯纳米片对 LiCoO 2 进行部分涂覆,以实验研究石墨烯改性机理在 4.5V 截止电压下改善 LiCoO 2 正极电化学性能方面。与原始 LiCoO 2 相比,G-LCO 在 2.5 和 4.5 V vs. Li + /Li 之间表现出更好的循环稳定性和倍率能力。进一步研究表明,部分涂覆石墨烯纳米片可以有效抑制电池阻抗的增加并缓解阴极电解质界面(CEI)的生长,从而获得出色的电化学性能。这项研究为提高高截止电压下 LiCoO 2 的循环稳定性和倍率性能提供了新的见解。关键词:LiCoO 2 ,部分涂层,石墨烯纳米片,CEI 层,高电压 1. 介绍
在有丝分裂期间,染色体发生广泛的结构变化,导致形成紧凑的cy骨体并终止大部分DNA依赖性代谢活性。因此,不会预期会干扰诸如DNA复制和转录等过程的DNA率对有丝分裂的基因组稳定性构成重大威胁。但是,有一些例外。DNA复制和修复中间介导,从物理上互连姐妹染色单体会危及忠实的染色体染色体,并且需要在后期开始之前解决。此外,二含染色体可以形成染色质桥,并诱导融合融合 - 破裂周期,对基因组稳定性产生可怕的后果。最后,在有丝分裂的早期逃脱G2/M DNA损伤检查点或出现的染色体断裂可能会导致落后的Acentric DNA片段在细胞退出有丝分裂时会误差并形成微核。染色质桥和微核都是突变级联反应的潜在来源,可导致巨大的杂质不稳定性,并显着促进基因组复杂性。在这里,我们回顾了我们对染色体桥和微核的起源和后果的最新进展以及细胞抑制它们的机制。
b'Abstract:使用高能量阴极在锂金属电池中极大地忽略了通用阴极的交叉,例如使用高能量阴极,从而导致严重的容量降解并引起严重的安全问题。在此,开发了由多功能活性位点组成的多功能和薄(25 \ XCE \ XBCM)中间层,以同时调节LI沉积过程并抑制阴极交叉。即使在10 MACM 2的高电流密度下,AS诱导的双梯度固相之间的相互作用结合了丰富的岩石嗜性位点也能稳定稳定的LI剥离/电镀工艺。此外,X射线光电子光谱和同步子X射线实验表明,富含N的框架和COZN双重活性位点可以有效地减轻不希望的阴极交叉,因此显着最大程度地减少了Li Li腐蚀。因此,使用各种高能阴极材料(包括LINI 0.7 MN 0.2 CO 0.1 O 2,LI 1.2 CO 0.1 Mn 0.55 Ni 0.15 O 2)组装的锂金属细胞,硫表现出明显改善的循环稳定性,并具有高阴极载荷。
硬碳(HC)是网格级钠离子电池(NIB)的有吸引力的阳极材料,这是由于碳的广泛可用性,其高特定能力和低电化学工作潜力。然而,需要解决第一周期库仑的效率和较差的HC的问题,以使其成为NIB的实用长期解决方案。这些缺点似乎是电解质依赖性的,因为与碳酸盐电解质相比,基于醚的电解质可以在很大程度上改善性能。对这些性能差异背后机制的解释对于高度可逆的钠储存的合理设计至关重要。结合气相色谱,拉曼光谱,低温传递电子显微镜和X射线光电子光谱,这项工作表明,固体电解质中相(SEI)是基于乙醚和碳酸电解质之间的关键不同,这确定了电荷转移Kinetics和parasitic反应的范围。尽管两个电解质都没有在HC散装结构中储存的残留钠,但基于醚的电解液形成的均匀和共形SEI可以提高循环的效率和速率性能。这些发现突出显示了通过界面工程使用HC阳极实现长寿命级笔尖的途径。
随着电动汽车和大规模储能系统的开发,现有的商业锂离子电池(LIB)越来越无法满足市场需求。出于这个原因,研究人员探索了各种新型材料系统,以增加电池的能量密度,例如基于合金的阳极,1,2 Li金属阳极,3,4 sul sul sul de-de-de-de-de-de-de de de基基阳极,5 - 7和基于Li-rich的锰的阴极。8,9在其中,硅(SI)被认为是商业石墨阳极的最佳替代品之一,因为它具有高理论能力(4200 mAh g -1)和适当的工作电压(〜0.4 V,vs.li/li/li +)。10然而,静电后,硅的体积膨胀高达300%,而Li +的反复插入和提取诱导了表面上的机械应力和变形,从而导致颗粒的粉碎。11,体积变形会破坏相邻硅颗粒之间或颗粒与当前收集器之间的电气接触,而活性材料可能完全从收集器脱离。10,12此外,硅表面上的固体电解质相(SEI)反复破裂并因硅的体积变形而导致,消耗了大量的电解质和活性锂。13随着时间的流逝,
摘要:我们利用飞行时间二次离子质谱 (TOF-SIMS) 和 X 射线光电子能谱 (XPS) 结合电化学技术对循环高镍(LiNi 1-x M x O 2 ,M = 金属)、富锂(Li 1+x Mn y M 1-xy O 2)和高压尖晶石(LiMn 1.5 Ni 0.5 O 4 )电极进行了全面研究,以更好地了解它们在循环过程中阴极-电解质中间相 (CEI) 结构的变化。TOF-SIMS 提供有关每个电极表面膜含量的碎片特定信息。高镍正极显示出厚的表面膜,最初含有 Li 2 CO 3,随后在循环过程中形成氧化有机碳酸盐。富锂电极表面膜在首次活化循环期间会形成强特性,其中释放的 O 2 会氧化有机碳酸酯形成聚合碳并分解 LiPF 6 。高压尖晶石电极在标准电解质稳定性窗口之外运行,产生活性氧化电解质物质,进一步分解 LiPF 6 。通过 TOF-SIMS 测量这些不同化学碎片的分布和浓度,最终通过循环高镍、富锂和高压尖晶石电极的彩色高分辨率图像进行总结。
战略决策被定义为“在采取的行动、投入的资源或树立的先例方面具有重要意义”(Mintzberg、Raisinghani 和 Theoret 1976 年,第 246 页)。制定、实施和执行公司目标的任务需要战略决策,这些决策可以使公司在行业中保持稳定并超越竞争对手。战略决策是每个组织的核心。它们构成了组织立足的基础。战略决策涉及创建一个组织可以运作的整体环境,并在其资源集和人力资本之间建立界面。战略决策经常与组织和工作决策混淆。两者不同。管理选择是重复性的决策,有助于或在一定程度上实现战略决策或运营决策。另一方面,运营决策是技术决策,有助于战略决策的执行。降低成本是一项有计划的决策,是通过减少员工数量的运营决策来实现的,而如何进行这些削减将是一项行政决策。战略是一个组织的长期方向和范围,它有助于组织在动态环境中通过资源配置获得优势,以满足市场需求并实现利益相关者的期望。
硫代磷酸盐基固态电池(SSB),具有高尼克三元阴极材料(例如Lini 0.83 CO 0.83 CO 0.11 MN 0.06 O 2(NCM))代表了有希望的下一代储能技术,原因是他们的预期高特定排放能力和改善的安全性。然而,通过相间通过相间的接触损失和细胞循环过程中的裂纹形成引起的快速衰减是一个显着的问题,阻碍了稳定的SSB循环和高能密度应用。在这项工作中,通过喷雾干燥过程获得了聚(4-乙烯基苯基苯基)三甲基铵双Bis(Tri-furomethanesulfonylimide)(NCM上的三甲基甲硫化液)(pvbta-tfsi))。NCM上仅2-4 nm厚度的极薄阳离子聚合物涂层有助于稳定NCM和LI 6 PS 5 Cl固体电解质(SE)之间的界面。电化学测试证实了长期循环性能和主动质量利用的显着改善。另外,聚合物涂层有效地抑制了NCM/SE界面的降解,尤其是氧化物种的形成,并降低了颗粒裂纹的程度。总体而言,这些结果突出了一种新的方法,可以使用SSB的NCM上的阳离子聚合物涂层来减轻SSB降解。
Figure 1-1 Evolution of electromobility [1] .................................................................................... 3 Figure 1-2 Schematic diagram of a Li-ion battery and main reactions [2] .................................... 4 Figure 1-3 Schematic diagram of a PHEV pack manusfactured by A123 Sysems .......................... 6 Figure 2-1 Single particle model (on the right) based on沿X轴完全电化学模型的空间离散化(左侧)。每个电极只有一个粒子,我们可以将每个节点的值视为电极上的平均数量[22]。............ 13 Figure 2-2 Different types of battery models used in battery management systems (Single particle and Pseudo-two dimensional models from [24]) ........................................................................... 15 Figure 2-3 Concentration gradient through the sphere, representing the single particle model .16图2-4 G(S)及其近似H(S)的比较。........................................................ 16 Figure 2-5 Comparison of fractional transfer function and its approximation in a frequency domain limited to the range including the BMS sampling frequency (approx.70 rad.s -1)。........... 18 Figure 2-6 Block diagram implementation of the electrical fractional model .............................. 18 Figure 2-7 OCP curves of Anode (left) and Cathode (right) against the respective lithiation degree ............................................................................................................................................. 21 Figure 2-8 Validation results of applying extended Artemis drive cycle to the fractional 模型 。23图2-9电压模型和分数电池模型的绝对估计误差和订单7 ECM的各自的绝对估计误差。................................................................................................................................................ 48 Figure 4-6 SDI 28 Ah cell opening at BOL ................................................................................... 52 Figure 4-7 SDI 28 Ah cell opening at EOL ................................................................................... 52
摘要:微管靶向药物 (MTA) 是癌症治疗中最成功的一线疗法之一。它们通过稳定或破坏微管 (MT) 来干扰微管 (MT) 动力学,并且在培养中,它们被认为在引起有丝分裂停滞后通过凋亡杀死细胞,以及其他机制。这种对 MTA 疗法的经典观点持续了很多年。然而,专门针对有丝分裂蛋白的药物成功率有限,以及大多数人类肿瘤的生长速度缓慢,迫使人们重新评估 MTA 的作用机制。过去十年的研究表明,MTA 的杀伤效率来自间期和有丝分裂效应的结合。此外,MT 还参与其他与治疗相关的活动,例如减少血管生成、阻止细胞迁移、减少转移以及激活先天免疫以促进促炎反应。 MTA 疗法的两个关键问题是获得性耐药性和全身毒性。因此,设计新型有效的 MTA 时,着眼于降低毒性,同时不影响疗效或促进耐药性。在这里,我们将回顾 MTA 的作用机制、它们影响的信号通路、它们对癌症和其他疾病的影响,以及这些经典药物有希望的新治疗应用。