病原体感染会导致人类和动物出现严重的临床疾病。人与动物接触的增多和环境的不断变化加剧了人畜共患传染病的传播。最近,世界卫生组织已将一些人畜共患流行病宣布为国际关注的突发公共卫生事件。因此,快速准确地检测致病病原体对于对抗新发和再发传染病尤为重要。传统的病原体检测工具耗时、成本高,并且需要熟练的人员,这极大地阻碍了快速诊断测试的发展,特别是在资源受限的地区。基于成簇的规律间隔短回文重复序列 (CRISPR-)-Cas 和适体的平台已经取代了传统的病原体检测方法。本文我们回顾了两种用于临床和食源性病原微生物的新型下一代核心病原体检测平台:基于 CRISPR-Cas 的系统,包括 dCas9、Cas12a/b、Cas13 和 Cas14;以及基于适体的生物传感器检测工具。我们重点介绍了基于 CRISPR-Cas 和适体的技术,并比较了它们的优缺点。基于 CRISPR-Cas 的工具需要繁琐的程序,例如核酸扩增和提取,而基于适体的工具则需要提高灵敏度。我们回顾了 CRISPR-Cas 和适体技术的结合,作为克服这些缺陷的一种有前途的方法。最后,我们讨论了基于 Cas14 的工具作为功能更强大的平台,用于检测非核酸靶标。关键词:成簇的规律间隔的短回文重复序列-Cas、适体、病原体检测、诊断工具
成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 (Cas9) 系统是一种适应性免疫反应防御机制,古细菌和细菌利用该机制降解外来遗传物质 (4,6)。该机制可以重新用于其他功能,包括哺乳动物系统的基因组工程,例如基因敲除 (KO) (1,2,3,5)。CRISPR/Cas9 KO 质粒产品利用来自 Broad 研究所张实验室开发的全基因组 CRISPR 敲除 (GeCKO) v2 库的向导 RNA (gRNA) 序列,能够识别和切割特定基因 (3,5)。
近年来,使用称为CRISPR的系统(群集定期间隔短的静脉体重复序列)为基因组编辑提高了令人难以置信的新可能性,以改善柑橘的改善。crispr用于对柑橘树的DNA序列进行小变化,从而导致特异性靶向突变。abil的重大进展是通过新的基因组序列技术和强大的计算机的选择使包括柑橘在内的任何生物体的遗传蓝图(包括柑橘)成为可能。许多商业上重要的柑橘类型已经或正在测序的过程中。
摘要:成簇的规律间隔短回文重复序列 (CRISPR) 相关内切酶 9 (CRISPR/Cas9) 基因编辑系统在许多细菌和古菌中发挥免疫抑制作用,具有高效、多样性和模块化等多种优势。它现在被广泛用于提高作物的质量和数量以满足全球粮食需求。尽管这些前景很诱人,但仍需要更深入的了解来提高其效率和安全性。因此,对这一特殊系统的概述非常重要。在这篇综述中,简要介绍了目前对不同类型的 CRISPR/Cas 系统的了解以及它们的机制、在作物育种中的应用和局限性,为未来的利用提供基本理解和指导。
支原体是一种成功的致病菌,可导致人类和各种动物宿主的衰弱性疾病。尽管支原体基因组极其精简,但它们已经进化出特殊的机制来从宿主细胞中获取必需的营养物质。用于操纵支原体基因组的遗传工具的匮乏阻碍了对致病菌种的毒力因子和营养物质获取机制的研究。本文总结了几种编辑支原体基因组的策略,包括同源重组、转座子、成簇的规律间隔短回文重复序列 (CRISPR)/Cas 系统和合成生物学。此外,本文还讨论了不同工具的机制和特点,以期为高效操纵支原体基因组提供参考和未来方向。
成簇的规则间隔回文重复序列被称为 CRISPR。它是一种可以编程来改变、消除或激活基因组的蛋白质。这项尖端技术提供了广泛的实施可能性,并将在未来几年彻底改变口腔保健。最广泛使用的基因组编辑技术包括归巢内切酶、转录激活因子样效应核酸酶、锌指核酸酶和 CRISPR-CRISPR 相关蛋白 9 (Cas9)。这些适应性强的基因组编辑工具可以以序列特异性的方式改变基因组。由于其高效和准确,基因组编辑方法 CRISPR-Cas9 已引起人们的关注,成为抗击癌症的有力武器。本综述介绍了这种方法及其用途,特别是在牙科领域的用途。
bp:碱基对 CRISPR:成簇的规律间隔的短回文重复序列 Cas:CRISPR 相关系统 DNA:脱氧核糖核酸 DSB:双链断裂 GE:基因工程 GEd:基因编辑 EPA:环境保护法 HDR:同源定向修复 HR:同源重组 Indel:插入/删除 kbp:千碱基对 MN:巨核酸酶 NHEJ:非同源末端连接 nt:核苷酸 ODM:寡核苷酸定向诱变 PN:可编程核酸酶 rDNA:重组 DNA RGENs:RNA 引导的工程核酸酶 SSB:单链断裂 SDN:定点核酸酶 TALEN:转录激活因子样效应核酸酶 ZFN:锌指核酸酶 ZFP :锌指蛋白
简介 成簇的规则间隔回文重复序列 (CRISPR) 和 CRISPR 相关 (Cas) 蛋白是一类由细菌编码的、RNA 引导的可编程 DNA 靶向和切割系统。由于其使用可定制的单向导 RNA (sgRNA) 的可编程特性,CRISPR-Cas 已实现强大的汇集筛选,以探索基因组范围内遗传扰动的功能。以最常用的 CRISPR-Cas9 系统为例,化脓性链球菌 Cas9 蛋白可以与 110 个核苷酸 (nt) 的 sgRNA 复合,该 sgRNA 包含一个 20 nt 序列,该序列与目标 DNA 区域互补结合并诱导双链断裂 (DSB)。基因组 DNA 上的这种切割机制会触发宿主非同源末端连接 (NHEJ) 或同源定向修复 (HDR)
在簇的调节间隔短的短质体重复序列(CRISPR)/CRISPR相关蛋白(CAS)系统中,原生质体不仅有助于快速验证各种RNA引导的内核酶的诱变效率,而且还可以是平台的dna-fiee。迄今为止,后一种方法已应用于许多农作物,尤其是那些具有复杂基因组的农作物,少年时期,杂种趋势和/或自我不相容性。原生质体再生是无DNA基因编辑的关键步骤。在本报告中,我们回顾了原生质体技术的历史和一些未来前景,包括原生质体转染,转化,融合,再生以及基于CRISPR/CAS的繁殖中的当前原生质体应用。
纵观历史,人类一直在寻求改善自身并获得优势的方法,无论是通过信息、技术还是身体增强。尽管机器学习的进步为计算机具有“超人”能力提供了希望,但另外两项进步很快将提供只有科幻小说才能想象和探索的选择。生物技术——具体来说,利用技术对生物进行物理改造——的发展轨迹超越了可逆的“人机合作”,最终实现了像机器人一样的无尽增强和修改的可能性。而基因工程,尤其是 CRISPR 1(成簇的规律间隔的短回文重复序列)和相关技术提供的可访问性,其发展轨迹有望使人类从出生起就变得更聪明、更强大、更“优秀”,预示着“高级人类”的到来。