向大脑给药有多种途径,包括脑实质内注射、脑室内注射和蛛网膜下腔注射。血脑屏障 (BBB) 阻碍了大多数药物渗透和进入中枢神经系统 (CNS),因此许多神经系统疾病仍未得到充分治疗。在过去的几十年里,为了避免这种影响,已经开发出几种纳米载体来将药物输送到大脑。重要的是,鼻腔内 (IN) 给药可以通过鼻腔和大脑之间的解剖连接直接将药物输送到大脑,而无需穿过 BBB。在这方面,树枝状聚合物可能具有通过 IN 给药将药物输送到大脑的巨大潜力,绕过 BBB 并减少全身暴露和副作用,以治疗中枢神经系统疾病。在这篇原创简明评论中,我们重点介绍了一些关于使用树枝状聚合物通过 IN 直接输送中枢神经系统药物的倡导例子。本综述重点介绍了树枝状聚合物包覆药物(例如小分子化合物:氟哌啶醇和丹皮酚;大分子化合物:葡聚糖、胰岛素和降钙素;以及 siRNA)通过 IN 给药的几个例子。观察到了良好的效率。此外,我们将介绍 PAMAM 树枝状聚合物在 IN 给药后的体内效果,整体上没有表现出一般毒性。
与继续主导整个医药市场的化学药品相比,蛋白质疗法具有 14 更高的特异性、更高的活性和更低的毒性的优势。虽然几乎所有现有的治疗性蛋白质 15 都是针对可溶性或细胞外靶标开发的,但蛋白质进入细胞并靶向细胞内 16 区室的能力可以显著拓宽它们对大量现有靶标的效用。鉴于它们的物理、化学、17 生物不稳定性可能会引起不良影响,并且它们穿过细胞膜的能力有限,因此需要递送 18 系统来充分发挥它们的生物潜力。在这种情况下,作为天然蛋白质纳米载体,19 细胞外囊泡 (EV) 前景广阔。然而,如果不是天然存在的,将感兴趣的蛋白质 20 带入 EV 并非易事。在这篇综述中,我们将探讨将外在蛋白质装入 EV 的方法,21 并将这些天然载体与其接近的合成对应物脂质体/脂质纳米颗粒进行比较,以诱导 22 细胞内蛋白质递送。 23 24 25 关键词:外泌体 - 微囊泡 - 治疗性蛋白质 - 细胞质递送 - 脂质体 - 大分子 26 递送 - 矢量化 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
本队列研究旨在利用机器学习技术评估急性缺血性卒中 (AIS) 合并糖尿病患者静脉溶栓后的预后结果。分析使用来自沈阳市第一人民医院的数据进行,涉及 2018 年 1 月至 2023 年 12 月接受溶栓治疗的 3,478 名患有糖尿病的 AIS 患者,最终在筛选后关注 1,314 名患者。测量的主要结果为 90 天改良 Rankin 量表 (MRS)。采用 80/20 的训练测试分割进行模型开发和验证,采用各种机器学习分类器,包括人工神经网络 (ANN)、随机森林 (RF)、XGBoost (XGB) 和 LASSO 回归。结果表明,XGB 模型的平均准确率为 0.7355 (±0.0307),优于其他模型。溶栓后预后的关键预测因素包括美国国立卫生研究院卒中量表 (NIHSS) 和血小板计数。研究结果强调了机器学习算法(尤其是 XGB)在预测糖尿病 AIS 患者功能结果方面的有效性,为临床医生提供了有价值的治疗计划工具,并根据接收者操作特性 (ROC) 分析和准确性评估改善了患者结果预测。
下一代测序 (NGS) 的进步大大加速了微生物学研究创新方法的发展。在本研究中,我们提出了一种新方法来量化细胞内环境中基因缺失突变体的净存活率。该方法基于标准化的 Illumina 基因组 DNA 短读测序,无需在每个缺失突变体上使用特定的选择标记。验证结果表明,该方法可以准确量化混合突变体的加标池中的突变体,与基于 CFU 测定的预期值相比没有统计学上显着差异( p > 0.05)。此外,该方法还用于量化巨噬细胞中的 S . Gallinarum 突变体。将六个突变体和一个对照菌株混合在一个池中,并让其感染 HD11 细胞 2 小时。结果与之前的研究结果一致,为混合突变体感染在功能基因鉴定中的可行性提供了证据。值得注意的是,该方法的简单性和标准化植根于标准全基因组测序协议,使其可在各个实验室中轻松实施。
完全切除肿瘤对于胶质瘤患者的生存至关重要。即使实现了完全切除,切除腔内残留的微尺度组织也有复发的风险。高分辨率魔角旋转核磁共振 (HRMAS NMR) 技术可以利用生物标志物代谢物的峰值强度有效区分健康和恶性组织。该方法快速、灵敏,可以处理小样本和未处理的样本,非常适合在手术期间进行实时分析。然而,只能对已知肿瘤生物标志物的存在进行有针对性的分析,这需要在手术过程中有具有化学背景的技术人员和了解肿瘤代谢的病理学家在场。在这里,我们展示了我们可以准确地实时执行此分析,并且可以使用机器学习以非目标方式分析全光谱。我们研究了一个新的大型胶质瘤和对照样本 (n = 565) 的 HRMAS NMR 数据集,这些样本也标有定量病理分析。我们的结果表明,基于随机森林的方法可以准确有效地区分肿瘤细胞和对照样本,中位 AUC 为 85.6%,AUPR 为 93.4%。我们还表明,我们可以进一步区分良性和恶性样本,中位 AUC 为 87.1%,AUPR 为 96.1%。我们分析特征(峰值)对分类的重要性,以解释分类器的结果。我们验证了已知的恶性肿瘤生物标志物(如肌酸和 2-羟基戊二酸)在区分肿瘤和正常细胞方面发挥重要作用,并提出了新的生物标志物区域。代码发布在 http://github.com/ciceklab/ HRMAS_NC 。
万古霉素是一种高风险药物,可能会导致或加重肾功能障碍。所有接受静脉万古霉素治疗的患者都必须接受每日检查,以确保持续使用是适当的。1. 是否已开具适当的万古霉素剂量和频率?2. 开始或继续使用万古霉素的患者是否有肌酐异常,如果是,是否已进行适当的剂量调整?3. 儿童是否充分补水,是否尽可能停止所有同时发生的肾毒素?4. 是否已检查万古霉素血清肌酐谷浓度并进行适当的剂量调整?5. 可以停止使用万古霉素吗?(尽早索取相关微生物样本进行显微镜检查、培养和药敏试验,并检查患者是否之前感染过 MRSA [Microalert B/C],如果未知,则考虑对存在临床问题或高风险患者进行鼻腔、腹股沟和腋窝 MRSA 拭子检查。)
血源性播散是导致脑转移的最常见转移方式;这意味着即使只看到一个颅内病变,整个大脑都可能受到微转移性疾病的影响。 [2] 最近,人们对这一前提产生了怀疑,导致一种反向哲学的出现,认为在某些患者中,颅骨内的疾病仅限于少数转移瘤,这种状态称为寡转移。 [2] 治疗脑转移常用的两种主要方法是对症干预和治疗干预。对症治疗通常包括使用皮质类固醇来减少肿瘤周围肿胀和使用抗惊厥药来防止癫痫复发。脑转移的治疗方案包括手术干预、全脑放射治疗 (WBRT)、立体定向放射外科 (SRS) 和化疗。多名患者会接受多种治疗方案的组合,治疗决策必须基于多个方面,例如患者的年龄和功能能力、初始肿瘤的类型、脑外疾病的程度、之前的治疗方法以及脑内病变的数量。[6]
摘要:Hemichorea-Hemiballismus(HCHB)是一种罕见的超动运动障碍,其特征是单侧,非自愿运动和不规则运动。尽管HCHB是中风后运动障碍,但它作为静脉溶栓的并发症的OC频率极为罕见。虽然先前的研究已经确定了血管内干预和静脉内溶栓可以有效地减轻中风患者的HCHB症状,但通过再融合疗法引起的HCHB的病理生理机制仍然很众所周知。在此,我们报告了急性缺血性中风患者静脉注射溶栓引起的HCHB病例,并探讨了其可能的病理生理基础。通过详细的临床观察,综合神经影像学分析以及广泛的文献综述,我们研究了Reper Fusion Therapy和HCHB发作之间的关系。我们的发现表明,再灌注疗法诱导的HCHB可能与恢复大脑血流后基底神经节或再灌注损伤的代谢活性有关。这项研究提供了对这种罕见并发症,提高临床医生意识的新见解,并为未来对HCHB机制和治疗的研究奠定了基础。
·年中反思的目的是促进与学校领导团队的讨论,并监视和评估学校改善计划(SIP)目标重点领域所取得的进展。
发育基因通常由多种具有重叠活性的元件调控。然而,在大多数情况下,这些元件的相对功能及其对内源基因表达的贡献仍未得到很好的表征。这种现象的一个例子是,已经提出了不同的增强子组来指导肢体顶端外胚层脊和中脑-后脑边界中的 Fgf8。利用体内 CRISPR/Cas9 基因组工程,我们从功能上剖析了这个复杂的调控集合,并展示了两种不同的调控逻辑。在顶端外胚层脊中,Fgf8 表达的控制似乎分布在不同的增强子之间。相反,我们发现在中脑-后脑边界中,三个活性增强子中的一个是必需的,而另外两个是可有可无的。我们进一步剖析了必需的中脑-后脑边界增强子,揭示它也是由必需和可有可无的模块混合组成的。该增强子的跨物种转基因分析表明,其组成可能发生在脊椎动物谱系中。