专利文件提供了有关哪些国家在某些技术上进行投资的知识,并可以确定潜在的创新趋势。本文的目的是分析专利趋势,这可能会导致三种能源技术的创新:生物量的热化学转化(生物能源),锂电池存储以及碱性水电解产生氢。基于不同的专利指标,将最活跃的国家进行比较,以提供对一个国家的全球市场地位的见解,尤其是德国,这在这里被用作参考。与此相一致,可以通过开放专利服务直接使用欧洲专利办公室数据库开发了免费的专利分析软件工具。命名技术的结果表明,与日本,中国和美国等国家相比,德国的专利活动被认为较低。虽然德国在电池和氢的位置是可比的,但生物能在确定的国家和发现的专利数量上显示出不同的结果。但是,建议考虑到更广泛的背景,以考虑对特定技术趋势的强大陈述。本研究中提出的工具和方法可以用作任何技术领域探索性评估的蓝图。
事件摘要确定基因功能是主要生物能源作物高粱 (L.) Moench 的一个重要目标,特别是与其显著的非生物胁迫耐受性相关的基因。然而,对与这些性状相关的基因的详细分子理解有限。我们对高粱进行的深入转录组研究表明了这一点,研究表明其近 50% 的转录组尚未注释。在本报告中,我们描述了转化高粱所需的全套工具,以便验证和注释基因。我们首先努力修改一种转化方法,该方法使用形态发生基因 Baby Boom 和 Wuschel2(胚珠发育蛋白 2)来加快转化速度并扩大适宜的基因型。根据我们的经验,转化不含形态发生基因的 RTx430 需要约 18 到 21 周,而使用含有形态发生基因的方法生成 T 0 植物则需要约 10 到 12 周。利用形态发生基因还可以转化几种以前未转化或历史上难以转化的高粱基因型,即快速循环 SC187、保绿 BTx642、BTx623 和甜高粱 Ramada。为了通过工程验证候选基因,同时引入形态发生基因,开发了一种称为利他转化的共转化策略。为了完成对目标基因(八氢番茄红素去饱和酶)的编辑,我们创建了新的构建体,其中也包括形态发生基因。为了能够全面表征转化植物,我们采用了技术来确定高通量水平的拷贝数和事件的独立性。通过这些努力,我们创建了一条从农杆菌感染到高通量分子基因分型的完整途径,可用于确定基因功能并加快这种广泛种植的生物能源作物植物的基础遗传研究。
摘要:具有碳捕获和储存的生物能源(BECC)和造林是在2°C或1.5°C场景下的许多研究中建议的关键负发射技术。但是,这些大规模的土地方法引起了人们对其经济影响的担忧,尤其是它们对食品价格的影响以及环境影响。在这里,我们专注于量化BECC的潜在规模及其对经济的影响,考虑到技术和经济考虑,但不包括可持续性和政治方面。为此,我们代表了MIT经济预测和政策分析模型中BECC技术的所有主要组成部分。我们发现,BECC可以在1.5和2°C的气候稳定目标下为减少排放量做出重大贡献,其部署是由二氧化碳许可证的收入所驱动的。的结果表明,使用该技术,全球经济成本和达到稳定目标所需的碳价格大大降低,而BECC则以碳价格以每吨二氧化碳240美元的价格充当真正的后备技术。如果仅由经济学驱动,则BECC部署将增加生产土地用于生物能源生产的使用,从而导致大量土地使用变化。但是,预计对商品价格的影响有限,全球商品价格指数平均增加了不到5%,在选定地区的总数高达15%。尽管BECC部署可能会因环境和/或政治原因而受到限制,但本研究表明,BECC的大规模部署并不损害农业商品价格,并且可以降低满足稳定目标的成本。仍然,至关重要的是,政策将二氧化碳的去除视为对大幅二氧化碳排放的补充,同时建立了可靠的会计系统和对BECCS的可持续限制。
2.1 先进生物燃料 先进生物燃料可以在替代化石燃料和减少排放方面发挥重要作用,但由于技术、经济和基础设施问题,许多生物燃料尚未完全建立。主要挑战之一是可持续生物质的成本和经济上可行的转化技术的准备情况。规模效应是生物质生产和转化的重要因素。大规模生物质生产需要大面积,这可能具有挑战性。依靠可持续生物质和多种作物等最佳农业实践是关键要求,因此即使是传统的废物转化过程也可以显著升级,以更好地与生物燃料合成过程相结合,从而实现有机原料成分的更高价值增值。从各种废物和残留物(农业残留物、城市垃圾的有机部分、污水污泥等)生产沼气并升级为生物甲烷已成为一种很好的选择,现在可用,用于运输中的车辆燃料和绿化绿色天然气网络。生物甲烷还可用作原料和天然气的替代品,以生产一系列生物基化学品。生物甲烷还可以储存起来以备将来使用,例如使用压缩天然气 (CNG) 和液化天然气 (LNG) 加气基础设施以液化生物甲烷 (LBM) 或压缩生物甲烷 (CBM)。还应注意的是,中间生物质能载体与绿色氢(化学结合到例如液体载体上)相结合,为短期和长期的能源储存提供了一种有趣且经济有效的方法。
本研究对北欧国家芬兰、瑞典、丹麦和挪威的生物能源和可再生能源状况进行了比较评估。哪些因素导致北欧国家目前大量使用可再生能源,尤其是生物能源?可再生能源的来源是什么,可再生能源在哪里使用?本文按时间序列描述可再生能源利用的发展情况,并将其与欧盟的总体发展情况进行比较。所有北欧国家的可再生能源消耗都很高,并且已经达到了欧洲 2020 战略规定的最终能源消耗总量目标,而欧盟则落后于 20% 的目标。2018 年,北欧国家共使用了 53.1 百万吨油当量可再生能源,占最终能源消耗(103.3 百万吨油当量)的 51%。生物能源约占可再生能源的一半,为 25.8 百万吨油当量,预计还会进一步发展。尤其是挪威和瑞典,可再生能源的份额较高(分别为 73% 和 55%),而芬兰和丹麦的份额分别为 41% 和 36%。挪威以水力发电而闻名(2018 年可再生能源 (RES) 份额为 81%),丹麦以风力发电而闻名(20%),而芬兰利用大量生物质进行热电联产和供热(79%),其次是丹麦(64%)和瑞典(55%)(2018 年)。在欧盟层面,生物能源在可再生能源生产中发挥的作用甚至高于北欧国家(2017 年为 56%),预计到 2020 年代,生物能源将在供暖和制冷、发电和运输等所有终端使用领域继续增长。
图 4. 运输部门的生物燃料产量(2015-2017/2018 年、2030 年和 2050 年的计划能源情景和转型能源情景)以及转型能源情景中 2017 年和 2030-2050 年的生物甲烷产量 26
另一方面,随着世界各地大型发电厂越来越多地使用木质颗粒作为煤炭的替代品,人们对其可持续性和温室气体减排效益的怀疑和批评也越来越多 6 。背景是,英国、荷兰和丹麦等森林资源不丰富的欧洲国家对木质颗粒的进口量一直在增加。如上所述,颗粒产量最近确实在增加,但 3700 万吨木质生物质颗粒相当于 0.66 EJ,仅占生物能源总供应量的 1.1% 7 。此外,仅为能源用途而砍伐森林的情况很少见,实际上,大多数采伐和间伐都是为了建筑材料和公共功能,以维护水资源和生物多样性 8 。
两个对国家能源和环境安全至关重要的领域推动了 BER 的研究议程:(1)开发具有成本效益的生物燃料和生物产品;(2)提高理解、预测和减轻气候变化中能源生产影响的能力。为此,BER 投资了植物和植物-微生物相互作用研究,目标是推动利用国内木质纤维素生物质和油籽作物生产生物燃料和生物产品。这些努力增加了对原料生产力背后的生物机制的理解,并促进了采用可大规模复制的新型高效生物能源战略的下一代生物能源作物的开发。然而,在开发在不同环境条件下具有优异生长和产量的旺盛作物方面仍然存在一些知识空白和挑战。BER 寻求
摘要 生物能源与碳捕获和储存 (BECCS) 在旨在实现《巴黎协定》目标的能源情景中占有重要地位,但用于生成这些情景的模型并未解决 BECCS 在区域范围内的环境和社会影响。我们将生态系统服务价值整合到土地利用优化工具中,以确定英国六个潜在地点是否适合建设一座利用当地生物质资源的 500 兆瓦 BECCS 发电厂。每年,每个 BECCS 工厂需要 2.33 公吨生物质,产生 2.99 公吨 CO 2 负排放和 3.72 TWh 电力。我们有三个重要发现:(a)BECCS 对生态系统服务的影响在空间上是离散的,英国 BECCS 最有利的地点是德拉克斯和伊辛顿,那里产生的净年度福利价值(来自量化的生态系统服务篮子)分别为 3900 万英镑和 2500 万英镑,巴罗(-600 万英镑)和泰晤士(200 万英镑)的年度福利价值明显较低;(b)超过 500 MW 的更大规模 BECCS 部署会降低净社会福利价值,德拉克斯的 1 GW BECCS 工厂产生的净年度福利价值为 1900 万英镑(与 500 MW 的部署相比下降了 50%),其他所有地点的福利损失;(c)可以部署 BECCS 来产生净福利收益,但生态系统服务之间的权衡和协同效益高度依赖于地点和环境,这些景观规模、特定于地点的影响应该是未来 BECCS 政策发展的核心。对于英国来说,要通过依赖 BECCS 实现《巴黎协定》的目标,需要在此处考虑的六个地点中每个地点都部署超过 1 GW 的能源,因此可能会导致重大的福利损失。这意味着需要增加规模较小的 BECCS 部署,以确保能源、负排放和生态系统服务的双赢。
纤维素有多种形式,其中很大一部分来自生活垃圾和工业垃圾 [28]。半纤维素可能是各种聚合单糖的混合物,如醛己糖、甘露糖、半乳糖、木糖、阿拉伯糖、4-O-甲基葡萄糖醛酸和半乳糖醛酸残基 [39]。在硬木木聚糖中,主链由通过 β -(1,4)-糖苷键偶联并通过 α -(1,2)-糖苷键与 4-O-甲基葡萄糖醛酸基团分支的木糖单元组成 [38]。木质素是由苯丙烷类前体合成的芳香族化合物。聚合物的基本化学苯丙烷单元(主要是紫丁香基、愈创木基和对羟基苯酚)通过一组键连接在一起,形成基质。该基质含有多种有用的基团,如甲氧基和羰基,它们赋予聚合物有机化合物高极性[40]。