在海洋生态系统中,可以通过通常分类为两种类型的各种方法来估算一级生产:基于孵育的和地球化学(与孵化无关)的方法。The former approach- es mainly include the 14 C-inorganic carbon incorporation methods (Steemann Nielsen, 1952 ), oxygen evo- lution between light-dark bottles (Serret et al., 1999 ), the H 2 18 O-labeling approach (M. Bender et al., 1987 ) and nutrient uptake experiments (Dugdale & Goering, 1967 ).与孵育无关的方法通常基于生产力的地球化学示踪剂,包括溶解氧的三相同位素(Luz&Barkan,2000),对系泊和滑翔机的氧记录分析(Nicholson 2008,Nicholson 2008,Nicholson 2008,Nicholson等,Nicholson等,2014,2014)和Electon Comptive losive eal eal eal eal ear e ear e ear e et estection ear et estection ear et e ear ear ear et e et estection(KK)。
以一个在这方面已经遥遥领先的科学界为例。高精度地质年代学家通过测量铀、铅和氩的同位素来精确确定岩石的年龄,在为自己设定黄金标准方面取得了长足进步。他们成立了 EARTHTIME 组织来协调他们的国际努力。UPb 实验室正在共享标准、重量法解决方案和示踪剂,而 Ar 同位素实验室正在探索样品预处理、辐照和分析方案以及数据缩减方面的差异,所有这些都是为了共同努力,尽量减少实验室间的偏差并提高数据质量。这项努力对地球科学的重要性可以用“没有日期,就没有比率”的口头禅来概括,而该组织最近取得的成功在已发表的文献中显而易见。然而,这种自我检查并不容易,正如该活动的领导者 Sam Bowring 所说,“你必须在门口检查你的自我。”
切尔诺贝利核电站泄漏和巴西戈亚尼亚放射源泄漏导致污染后,日本开发并实施了用于调查和净化大面积污染以及管理随后的放射性废物的技术。这些民用放射性物质泄漏的例子提供了一些城市放射性修复的首批例子。2011 年福岛第一核电站泄漏放射性铯同位素 (Cs 134 和 Cs-137) 后,日本最近开发和演示了许多新兴技术。日本原子能机构 (JAEA)、日本环境省 (MOE) 和国家环境科学研究所 (NIES) 等日本政府机构以及学术机构和行业报告的技术信息已被总结,并与美国最近开发、部署和可用的技术进行了比较。
ISSI 是 Europlanet 2020 研究基础设施 (RI) 项目的一部分。Europlanet 2020 RI 通过开放访问欧洲研究区内最先进的研究数据、模型和设施,解决了现代行星科学面临的关键科学和技术挑战。因此,ISSI 组织了 3 场研讨会:i)“样品返回在解决行星科学重大悬而未决问题中的作用”(2018 年 2 月)、ii)“从同位素和元素测量中解读类地行星演化”(2018 年 10 月)和 iii)“从同位素和元素测量中解读类地行星演化”(2018 年 11 月)以及“太阳系 - 系外行星科学协同作用”论坛(2019 年 2 月)。研讨会产生的同行评审论文将持续发表在相应的空间科学评论专题合集中。
在南极的表面下方是数十万年来大气组成的变化的完美记录。这个独特的档案使我们能够在1950年代现代大气监测开始之前重建大气CO 2,准确率仅为百万分之几。数据揭示了大气中的自然变化在冰川间冰期,千禧一代和百年纪念尺度上,因此随着时间的推移提供了可靠的辐射性重建。此外,可以以足够精度测量CO 2的稳定同位素,以在这些相同的时间尺度上量化CO 2的源和下沉。组合,CO 2的浓度和同位素组成使我们能够约束过去的气候灵敏度(即气候如何响应CO 2的变化)和碳气候反馈(即碳循环如何响应气候变化的碳循环))。
辐射后检查通常会利用各种样本制备,检查和分析方法;在大多数情况下,需要远程处理和屏蔽才能保护工人或敏感仪器免受辐射危害。在辐照检查期间获得的数据得到了对辐射条件,制造参数和其他相关信息的先验知识,这些信息可以在反应堆操作期间或出院后不久获得。辐射后检查对当前和下一代反应器燃料和材料的发展,资格和持续监视至关重要。辐射后考试的重要性扩展到其他应用程序,包括但不限于为代码或模型验证和验证提供支持数据,进一步开发燃料和燃料组件,以最大程度地提高绩效,提取和从用过的燃料中的同位素研究以进行健康和空间应用程序,以及开发短期和长期燃料储存和长期燃料和/或/或以/或/或以上的储存解决方案。
辐照在德国奥伊斯基兴的“弗劳恩霍夫自然科学技术趋势分析研究所”进行,使用最大剂量率为 720 krad/h 的 60 Co 源和单独的中子源。同位素 60 Co 经 β 衰变为 60 Ni,半衰期约为 5.3 年,后者通过发射能量为 1.172 MeV 和 1.332 MeV 的伽马射线衰变为镍的基态 [3]。弗劳恩霍夫 INT 的 THERMO-Fisher D-711 中子发生器通过以 150 kV 的电压将氘离子 (D = 2H) 加速到氘或氚靶 (T = 3H) 上来产生中子。在靶内发生DD或DT核聚变反应,分别释放氦同位素3He和4He,以及能量分别为2.5MeV和14.1MeV的快中子[4]。3.被测装置
一个著名的例子是1986年在乌克兰切尔诺贝利核电站发生的事故,是历史上最大的不受控制的放射性发行。在受影响最大的三个国家 - 白俄罗斯,俄罗斯联邦和乌克兰(加拿大,2022年)。工人和公众暴露于三种主要类型的放射性核素类型:碘131,134和137年(加拿大,2022年)。当碘131释放到环境中时,它会很快转移到人类并被甲状腺吸收。但是,I-131的半衰期短(8天)。暴露于放射性碘的儿童通常会接受比成年人更高的剂量,因为甲状腺较小,并且新陈代谢较高(加拿大,2022年)。剖宫产具有更长的半衰期(大约2年的134年和30年的137年),增加了通过摄入受污染的食物和水,吸入受污染的空气,或从土壤中(加拿大土壤中的放射性核核素沉积的,20222年)而增加长期暴露的机会。