通常应用了一种耦合自旋和电荷转运的耦合转移方法,以确定作用于金属阀中磁化强度的自旋转移扭矩。这种方法不适合描述磁性隧道连接中主要的隧道传输。在这项工作中,我们向自旋和电荷漂移 - 扩散方程提出了一个耦合的有限元解。我们证明,通过引入磁化依赖性电阻率,人们可以成功地重现铁磁层中磁性方向的电阻依赖性。然后,我们研究所得扭矩对系统参数的依赖性,并表明该方法能够重现MAG Netic Tunnel Junction预期的扭矩幅度。作为整个结构的唯一方程组,这构成了一种有效的有限元方法来描述新兴的自旋转移扭矩记忆中的磁化动力学。
因此,可以通过执行各个量子数交换的所有可能组合来获得允许的对振幅(eqs。(S2)和(S3)),填充反对称条件等式。(S1)。这样做,我们发现八个允许尊重反对称条件的对对称类别,其中4对应于奇数相关性,请参见表S1。特定相关性是超导索引(sup。索引)在扩大允许的对对称性方面起着至关重要的作用。表S1在主文本的“ jjs中的us频间振幅”部分中显示为表1。在没有任何自旋粘合字段的情况下,出现对的相关性的自旋对称性与母体超导体的自旋对称性相同。因此,在我们的研究中允许的对对称类别(不存在旋转式粘合字段)是ESEE和OSOE对对称类别:它们对应于超导体指数中的偶数(奇数频率)旋转(奇数)均匀(奇数)旋转单元(奇数),甚至对应于超导器指数。通过包括一个自旋混合字段,可以获得表S1中对应于OTEE和OTOO对对称类别的奇数自旋 - 三个三角对振幅,可以用作超导阶段高度可控制的旋转源,从而可以使超导性旋转旋转的超导量。由于我们在主文本中提出的结果中没有自旋混合字段,因此其中的对对称性表现出父母超导体的自旋对称性,即自旋单旋。这是在主文本的“ JJS中的persupconductor对振幅”部分中特别讨论的。
超导二极管效应(SDE)是一种磁电现象,其中外部磁场将非零的质量中心动量赋予库珀对,以促进或阻碍根据其方向促进超级电流的流动。我们提出,基于量子的自旋霍尔绝缘子(QSHI)的约瑟夫森连接器可以用作非隔离电子设备的多功能平台,当通过相位偏置和非平面磁场触发时,该平台表现出SDE。通过计算Andreev结合状态和准颗粒状态的连续体的贡献,我们提供了数值和分析结果,审查了SDE的各个方面,包括其质量Q因子。发现Q因子的最大值在低(零)温度下是通用的,它的起源与独立于交界处的特定细节的潜在拓扑特性相关。随着磁场的增加,由于轨道效应引起的诱导超导间隙的关闭,SDE减小了。要观察SDE,必须设计基于QSHI的Josephson结,以使其边缘具有不务件的运输。此外,我们在一个更具异国情调但现实的场景中探索了SDE,在驱动电流时,约瑟夫森交界处的典型地面态奇偶校仍然保守。在这种4π的周期情况下,我们预测SDE的增强是与其2π-周期性的,平等无限的对应物相比的增强。
我们提供了对双结功能性共同聚合物网络的规范介绍,该网络结合了高功能和低功能(F)动态交联连接,以赋予负载,消散和自我修复能力。这种独特的网络配置类型提供了由共价和可逆的交叉链接组成的传统双开关网络的替代方法。高F连接可以提供类似于共价交联的承重能力,同时保留自我修复和当前赋予刺激性反应性的能力,这是由高F连接物种引起的。我们使用金属配位聚合物水凝胶网络证明了该设计基序的机械性能,这些金属凝胶网络通过金属纳米颗粒(高F)和金属离子(低F)交联连接的不同比率进行动态交联。我们还展示了纳米颗粒交联聚合物的自发自组装到各向异性板上,这可能是可以推广的,用于设计具有低体积分数渗透高f网络的双结功能性网络。©2022作者。所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1122/8.0000410
J. Alvarez* a,b,c,C.Marchaet A,B,C,A。Morisset A,B,D,L。Dai A,B,E,F,J.-P。 Kleider A,B,C,RaphaëlCabald,P.R。 B Sorbonne University,CNRS,巴黎电力和电子工程实验室,法国75252; C ile -de -France(IPVF)的C光伏研究所,30 Rd 128,91120 Palaiseau,法国; D同型太阳能电池实验室,新能源技术研究所(CEA -LITEN),50 Avenue du LacLéman,73375,Le Bourget -Du -Du -Du -Du -lac,法国; E界面和薄层物理实验室(LPICM),CNRS,Ecole Polytechnique,91128 Palaiseau,法国; f冷凝物质物理学实验室(LPMC),ÉcolePolytechnique,91128 Palaiseau,France
控制薄膜中垂直磁各向异性(PMA),近年来由于其技术重要性而受到了相当大的关注。基于PMA的设备通常涉及重金属(氧化物)/铁磁 - 金属双层,在此,由于界面自旋 - 轨耦合(SOC),磁化的平面内(IP)稳定性被损坏了。在这里我们表明,在v/mgo/fe(001)中,具有竞争的面板内和平面外(OOP)磁各向异性的外延连接,SOC介导的相互作用(Fermagnet(FM)(FM)和超导体(SC)之间的相互作用可增强有效的PMA以下超导管过渡的有效PMA。这会产生部分磁化重新定位,而除了最大的连接外,没有任何应用领域,其中IP各向异性更强大;对于最小的连接,由于IP和OOP各向异性之间的竞争更强,诱导完全OOP转变(H OOP)所需的场所降低。我们的结果表明,在存在超导性和施加的电场的情况下,有效PMA的程度可以由连接横向大小控制。我们还讨论了HOOP场如何受到磁性杂散场与超导涡流之间的相互作用的影响。我们的实验发现,由铁磁体 - 螺旋体相互作用的数值建模,开放途径,可以主动控制新兴无耗散的超导旋转电子产品中的磁各向异性的开放途径。
摘要:在关键细胞过程(例如转录,复制和DNA修复)过程中,DNA三向连接(TWJ)结构瞬时形成。尽管具有重要意义,但TWJ的热力学(包括链长,碱基对组成和配体结合对TWJ稳定性和解离机制的影响)的了解很少。为了解决这些问题,我们将温度控制的纳米电喷雾离子化(TC-NESI)与循环离子迁移率质谱(CIM-MS)仪器连接起来,该仪器也配备了表面诱导的分离(SID)阶段。这种新型组合使我们能够研究三个TWJ复合物的结构中间体,并检查GC碱基对对其解离途径的影响。我们发现,两个TWJ特异性配体2,7-Trisnp和Trispob导致TWJ稳定,这分别揭示了熔化温度(T m)的升高13或26°C。为了洞悉气相中的构象变化,我们采用了IMS并进行了SID来分析TWJ及其配体的复合物。对IM到达分布的分析表明,TWJ的单步分离及其中间体对三个研究的TWJ复合物进行了分解。在配体结合后,需要3 V(2,7-Trisnp)和5 V(TrispoB)较高的SID能量才能诱导TWJ的50%解离,而在没有配体的情况下为38 V。我们的结果表明,利用TC-ESI与CIMS结合使用,SID和SID进行TWJ复合物的热力学表征和配体结合的研究。这些技术对于TWJ设计和开发作为药物靶标,适体和功能生物材料的结构单位至关重要。
摘要 — 本文展示了一种使用垂直自旋转移力矩磁隧道结的新型磁传感器。传感元件呈圆柱形,直径为 50 纳米,据我们所知,是迄今为止报道的最小的磁传感器之一。本文介绍了传感元件和相关信号处理电子设备的工作原理,它们提供与外部磁场成比例的信号。详细介绍了实验结果,并将其与最先进的商用集成磁传感器以及基于磁隧道结的具有可比尺寸的已发布的磁阻传感器进行了比较。所开发的传感器的测量灵敏度为 1.28 V/T,动态范围达到 80 mT。测得的噪声水平为 21.8 µT/√Hz。描述并比较了所提出的传感器的两种不同工作原理,一种基于时间数字转换器,另一种基于脉冲宽度调制信号。这两种方法都只需要标准的微电子元件,适用于将传感元件与其调节电子设备单片集成。需要对传感元件以及调节电子器件进行后续改进,以进一步降低噪声水平。传感元件及其调节电子器件与磁性随机存取存储器制造中已经使用的制造工艺兼容。这为大规模生产开辟了道路,并满足了消费电子、汽车、工业传感、物理实验或医疗设备等各种市场的需求。
我们先前报道了由IP-S光蛋白用两光子聚合物(TPP)制造的单细胞粘附微拉伸测试仪(SCAμTT),用于研究定义的拉伸负荷下单个细胞连接的机制。该平台的主要局限性是IP-S的自动荧光,IP-S的自发荧光,TPP制造的光素,它显着增加了背景信号并使拉伸细胞的荧光成像变得困难。在这项研究中,我们报告了一种新的SCAμTT平台的设计和制造,该平台可减轻自动荧光,并证明其在单个细胞对成像中的能力,因为其相互连接被拉伸。使用IP-S和IP-VISIO(一种具有降低自动荧光的光蛋白)的两种物质设计,我们显示了平台的自动荧光显着降低。此外,通过将孔与金涂层整合到底物上,几乎完全缓解了自动荧光对成像的影响。使用这个新平台,我们证明了一对上皮细胞的能力,因为它们被拉伸至250%的应变,从而使我们能够观察到连接破裂和F-肌动蛋白回收,同时记录交界处的800 kPa应力的积累。此处介绍的平台和方法可能有可能详细研究细胞 - 细胞连接中的机制和机械转导的机制,并改善机械生物学应用中其他TPP平台的设计。
图3:(A-B)基于Si Nanonet的两个可能的晶体管配置的方案:(a)多平行 - 通道FET(MPC-FET)和(b)nanonet-fet(nn-fet)。对于MPC-FET,电流可以直接流过SINW,直接桥接源和排水管,而对于NN-FET,电流必须通过涉及SINWS和SINW/SINW连接的渗透路径流动。对应于源量距离的通道长度(L C)从5 µm到100 µm不等,而通道宽度(W C)固定为200 µm。(c)用10 ml胶体SINW悬浮液详细阐述的典型Si纳米纳特的SEM图像,对应于0.23NWS.μm-2的密度。(d)处理后Si Nanonet磁场效应晶体管的SEM顶视图。200 µm x 200 µm正方形对应于源/排水接触板。