FR-AlN-ST 是一种先进的结构氮化铝陶瓷,采用高温液相烧结制成。它是一种完全致密的棕褐色结构陶瓷,能够使用近净形状和金刚石研磨工艺制成。由于钠和二氧化硅浓度较低,它非常适合要求高导热性的半导体、商业和航空航天应用。FR-AlN-ST 的热膨胀率与钨和钼的热膨胀率非常匹配,因此可以创建能够在各种工作温度下工作的密封组件。添加氧化钇以实现液相烧结,还可以提高传统 Mo/Mn 和 Mo/Mn/W 厚膜金属化系统的粘合强度。
亲俄黑客组织“KillNet”对 HPH 部门的威胁 执行摘要 黑客组织“KillNet”——过去曾针对美国医疗保健行业,并积极针对卫生和公共卫生部门。众所周知,该组织发动 DDoS 攻击,并运营多个公共频道,旨在招募人员并通过这些攻击引起关注。报告 KillNet 是一个亲俄黑客组织,自 2022 年 1 月起活跃,以针对支持乌克兰的国家(尤其是自去年俄乌战争爆发以来的北约国家)的 DDoS 活动而闻名。DDoS 是该组织使用的主要网络攻击类型,每分钟可导致数千个连接请求和数据包发送到目标服务器或网站,从而减慢甚至停止易受攻击的系统。KillNet 的 DDoS 攻击虽然通常不会造成重大损失,但可能会导致服务中断数小时甚至数天。虽然 KillNet 与俄罗斯联邦安全局 (FSB) 或俄罗斯对外情报局 (SVR) 等俄罗斯官方政府机构的关系尚未得到证实,但该组织应被视为对政府和关键基础设施组织(包括医疗保健)的威胁。对 HPH 行业的影响 KillNet 之前曾针对或威胁要针对医疗保健和公共卫生 (HPH) 领域的组织。例如,KillNet 组织的高级成员 Killmilk 曾因美国国会的乌克兰政策而威胁美国国会出售美国人民的健康和个人数据。2022 年 12 月,亲俄黑客组织声称入侵了一家支持美国军方成员的美国医疗保健组织,并声称拥有该组织的大量用户数据。2022 年 5 月,一名 23 岁的 KillNet 成员因袭击罗马尼亚政府网站而被捕。据报道,作为对逮捕的回应,KillNet 要求释放他,并威胁说,如果他们的要求得不到满足,他们将攻击英国医院的救命呼吸机。该成员还威胁要攻击英国卫生部。KillNet 对其攻击或行动的任何说法都值得谨慎对待。鉴于该组织夸大其词的倾向,这些宣布的行动和发展可能只是为了引起公众和整个网络犯罪地下组织的关注。CISA 关于应对网络事件(例如 DDoS 攻击)的更多指导可在此处找到。2023 年 1 月 28 日,用户发现并公开分享了一份针对多个国家/地区医院和医疗机构的所谓 Killnet 攻击列表。缓解措施虽然无法完全缓解拒绝服务攻击影响您的服务的风险,但有一些实用步骤可以帮助您做好响应准备,以防您的服务受到攻击。根据 NCSC 的说法,这些包括 1) 了解您的服务,2) 上游防御,3) 扩展,4) 响应计划,以及 5) 测试和监控。组织可以立即采取措施帮助缓解 DDoS 威胁,方法是考虑以下几点: • 启用 Web 应用程序防火墙以缓解应用程序级 DDoS 攻击。• 实施多内容交付网络 (CDN) 解决方案。这将最大限度地减少 DDoS 的威胁
通过AlGaN/GaN/InGaN结构实现8 W mm 1,通过N极性GaN HEMT实现94 GHz时8 W mm 1 [3]。这些结果对于商业(5G及以上、汽车雷达)和国防(SATCOM、雷达)应用越来越重要,所有这些应用都在向毫米波频率范围(30 – 300 GHz)推进。为了进一步提高GaN HEMT的优势,我们的研究小组在氮化铝(AlN)缓冲层上引入了HEMT。[4 – 6]通过用AlN替换AlGaN顶部势垒并用AlN替换典型的GaN缓冲层,AlN/GaN/AlN异质结构具有更高的热导率、改善了薄GaN通道(<30nm)的载流子限制,并且与其他传统顶部势垒材料(如AlGaN或InAlN)相比,顶部势垒具有出色的垂直可扩展性。其他研究小组也展示了基于AlN 的器件的有希望的结果,包括基于AlN 衬底的HEMT,在X 波段实现15 W mm 1 [7] ,AlN 缓冲区击穿功率为 5 MV cm 1 [8] 。已经展示了使用AlN 顶部势垒的HEMT,包括GaN HEMT 记录f T = f max 为454/444 GHz,[9 – 11] PAE 为27% ,相关输出功率为1.3 W的W 波段功率放大器,[12] 噪声系数小于2的K a 波段低噪声放大器,[13] 以及40 GHz 时为4.5 W mm 1 [14] 。所有这些器件都基于AlN/GaN/AlGaN 异质结构。 AlN/GaN HEMT 已显示出 Ga 极性 HEMT 在 W 波段的创纪录输出功率,在 94 GHz 时 P out ¼ 4 W mm 1。[15] 除了射频 (RF) HEMT 之外,氮化铝还具有单片集成大电流 GaN/AlN p 型场效应晶体管 (pFET) [16 – 18] 和晶体 AlN 体声波滤波器 [19] 的潜力,这两者都是通过 AlN 缓冲层实现的。SiC 衬底以衬底集成波导 (SIW) 和天线的形式实现了进一步的集成。[20] 这种集成生态系统被称为 AlN 平台,使高功率氮化物互补金属氧化物半导体 (CMOS)、RF 滤波器、单片微波集成电路 (MMIC) 以及 RF 波导和天线共存于一个单片芯片上。[21]
摘要我们介绍了利用激光多普勒振动仪(LDV)技术的基于氮化铝(ALN)的压电微压超声传感器(PMUT)的非线性。在谐振频率上工作的PMUT将压电层激发到了强非线性区域。观察到非线性现象,例如频移和非平面外位移幅度。使用压电非线性的数学模型用于分析非线性行为,并随后获得了二阶压电系数。在PMUT非线性产生的大约120个谐波下,在相对较高的电压的单色AC信号下实验获得。此外,可以精心控制谐波的数量。开发了三种不同的应用程序来利用声学混合微型系统和射频(RF)领域中的谐波世代。ALN压电非线性的观察和分析可能有益于基于Aln薄片的PMUT的进一步理解。我们认为,生成的谐波可以在信号处理和调制中的多种应用中使用。
不可否认的是,对于那些无法治愈且已知病因的遗传性疾病患者来说,他们感到沮丧,目前对某些患者来说,只有管理才能解决问题,直到病情恶化导致患者死亡。1,2 当已明确特征的基因变化与遗传性疾病有因果关系时,可以制定专门的治疗方法。几十年来,选择性基因沉默、淬灭或干扰 NAT,以及最近的基因组编辑的吸引力,有望成为人类疾病精准和个性化治疗未来的革命性飞跃。3 – 5 这些疗法具有高度特异性,可以通过精心设计和细致的靶标筛选来限制有害和有毒副作用的实现,这是一个吸引人的特点。6
通讯作者:Carmella Evans-Molina,cevansmo@iu.edu。贡献声明CEM,JS和JLF构思和设计了这项研究,参与了数据的获取,分析和解释,并严格修订了手稿。JLF设计了这项研究,参与了数据的分析和解释并撰写了手稿。MW和DC参与了数据的分析和解释,写了一部分手稿并编辑了最终手稿。JMW参与了数据的分析和解释,并严格修订了手稿。KL和FM帮助进行了数据分析,编写了手稿的一部分并编辑了最终手稿。所有作者都阅读并批准了最终手稿,并同意对工作的各个方面负责。CEM是这项工作的保证人。作者的关系和活动作者宣称,没有关系或活动可能会偏见或认为对他们的工作有偏见。
M. Beshkova*、P. Deminskyi、C.-W Hsu、I. Shtepliuk、I. Avramova、R. Yakimova 和 H. Pedersen Docent M. Beshkova 电子研究所,保加利亚科学院 72 Tzarigradsko Chaussee Blvd, 1784 Sofia, Bulgaria 电子邮件:mbeshkova@yahoo.com P. Deminskyi 博士、Dr. C.-W Hsu,I. Shtepliuk 博士,林雪平大学物理、化学和生物系 SE-58183 林雪平,瑞典 保加利亚科学院普通与无机化学研究所讲师 I. Avramova。 G.邦切夫街BL。 11,1113 索非亚,保加利亚 R. Yakimova 教授,H. Pedersen 教授 林雪平大学物理、化学和生物系 SE-58183 林雪平,瑞典 关键词:AlN、SiC、石墨烯、ALD、SEM、AFM、XPS 摘要
摘要 — 本研究介绍了一种有前途的微加工技术,该技术采用无硅 (SON) 工艺在深度为 1 μ m 的真空腔上形成厚度为 2 μ m 的连续单晶硅膜。利用 SON 工艺,已在 8 英寸硅晶片上展示了高填充因子压电微机械超声换能器 (pMUT) 阵列,腔体宽度范围从 170 μ m 到 38 μ m。器件采用 15% 钪掺杂氮化铝作为 pMUT 的压电层,适用于空气耦合和水耦合应用。空气耦合 pMUT 的峰值位移频率为 0.8 至 1.6 MHz,Q 因子在 120 至 194 之间。水耦合 pMUT 阵列显示,在距离 20 毫米的 DI 水中,针式水听器测量的传输压力范围为 0.4 至 6.9 kPa/V,峰值频率在 5 至 13.4 MHz 之间,分数带宽为 56% 至 36%。本文提出的压电 SON 工艺有可能在低成本、高产量 pMUT 制造中获得关注。
摘要:我们进行了广泛的理论和实验研究,以确定短周期 GaN/AlN 超晶格 (SL) 中 GaN 和 AlN 层之间的界面相互扩散对拉曼光谱的影响。通过从头算和随机元等位移模型框架,模拟了具有尖锐界面和不同界面扩散程度的 SL 的拉曼光谱。通过对 PA MBE 和 MOVPE 生长 SL 的理论计算结果与实验数据的比较,表明与 A 1 (LO) 限制声子相关的能带对界面扩散程度非常敏感。结果获得了 A 1 (LO) 限制声子范围内的拉曼光谱与 SL 中界面质量之间的相关性。这为使用拉曼光谱分析短周期 GaN/AlN SL 的结构特征开辟了新的可能性。
随着对电子设备成本更低、性能更好、尺寸更小、可持续性更强的需求,微机电系统 (MEMS) 换能器成为受益于小型化的主要下一代技术候选之一 [1-3]。压电 MEMS 谐振器具有高品质因数和大机电耦合度,是射频 (RF) 系统中很有前途的产品 [4-8]。压电 MEMS 谐振器的主要材料是氮化铝 (AlN)、压电陶瓷 (PZT)、氧化锌 (ZnO) 和铌酸锂 (LN) [9-13]。近年来,掺杂 AlN 薄膜,尤其是氮化铝钪 (AlScN),因其能提高 d 33 和 d 31 压电系数而备受研究 [14]。基于AlN和AlScN薄膜的压电MEMS谐振器凭借单片集成度高、性能优越等特点,受到越来越多的关注。MEMS谐振器种类繁多,如表面声波(SAW)谐振器[15,16]、薄膜体声波谐振器(FBAR)[17-19]。但SAW器件与CMOS工艺不兼容,FBAR的频率主要取决于压电层厚度,因此很难在一个芯片上实现多个工作频率或宽频率可调性。另一方面,基于AlN和AlScN的轮廓模式谐振器(CMR)与CMOS工艺兼容[20-24]。同时,工作频率和谐振频率与CMOS工艺兼容,而基于CMR的器件的工作频率和谐振频率与CMOS工艺不兼容。