©作者2024。由牛津大学出版社代表FEMS出版。这是根据Creative Commons Attribution许可条款(http://creativecommons.org/licenses/4.0/)分发的一篇开放访问文章,该文章允许在任何媒介中不受限制地重复使用,分发和再现,前提是适当地引用了原始工作。
药理学实验表明,神经肽可以有效调整神经元活性并调节运动输出模式。但是,它们在塑造先天运动方面的功能通常仍然难以捉摸。例如,先前已证明生长抑素在脑室中注射时会诱导运动,但是当在体外沐浴在脊髓中时,可以抑制虚拟的运动。在这里,我们通过在斑马鱼中淘汰生长抑素1.1(SST1.1)来研究生长抑素在先天运动中的作用。我们在数百个突变体和对照兄弟姐妹幼虫中自动化并仔细分析了数十万次爆发的运动运动学。我们发现SST1.1的缺失不会影响声学 - 卵形逃生反应,而是导致异常探索。SST1.1突变幼虫在更高速度的距离上游动并进行更大的尾弯,表明生长抑素1.1抑制了自发的运动。我们的研究完全表明,生长抑素1.1天生有助于减慢自发的运动。
幼虫在整个海洋中都很丰富。幼虫在研究中被忽略了,因为它们很难进行,并且被认为在生物地球化学周期和食物奖中并不重要。我们综合证据,表明它们的独特生物学使幼虫可以将更多的碳转移到更高的营养水平,而深入海洋,而不是通常所欣赏的。幼虫在人类世可能变得更加重要,因为他们吃的小浮游植物被预计在气候变化下会更加普遍,从而减轻了预计的预计未来在海洋生产力和薄片中的下降。我们确定了批判性知识差距,并认为应将幼虫纳入生态系统评估和生物地球化学模型中,以改善对未来海洋的预测。
摘要 目的:心动过缓是由于心脏自律性受抑制、复极化延长或传导减慢所致。ERG 通道介导心脏动作电位中的复极化电流 I Kr,而 T 型钙通道 (TTCC) 参与哺乳动物的窦房起搏点和房室传导。斑马鱼已成为人类心脏电生理学和疾病的宝贵研究模型。在这里,我们研究了 ERG 通道和 TTCC 对斑马鱼幼虫起搏点和房室传导的贡献,并确定了引起房室传导阻滞的机制。方法:在心脏中表达比率荧光 Ca 2 + 生物传感器的斑马鱼幼虫用于测量体内跳动心脏的 Ca 2 + 水平和节律,同时测量收缩和血流动力学。房室延迟(心房和心室 Ca 2 +瞬变开始之间的时间)用于测量脉冲传导速度,并区分慢传导
1 细胞与分子生物学、微生物学和免疫学系,乌普萨拉大学,Bo x 596,SE-751 24 乌普萨拉,瑞典 2 瑞典农业科学大学(SLU)生态学系,Box 7044,SE-750 07 乌普萨拉,瑞典 3 查尔姆斯理工大学生命科学、食品与营养科学系,SE-412 96 哥德堡,瑞典 4 VA-guiden Sverige AB,Östra ˚A gatan 53, 4 tr,SE-753 22 乌普萨拉,瑞典 5 格林威治大学自然资源研究所,Central Avenue,Chatham Maritime,Kent ME4 4 TB,英国 ∗ 通讯作者。细胞与分子生物学、微生物学和免疫学系,乌普萨拉大学,Bo x 596,SE-751 24 乌普萨拉,瑞典。电子邮件: olle.terenius@icm.uu.se 编辑: [Martin W. Hahn]
昆虫肠道内的微生物群对其宿主起有益的作用,例如促进消化和从饮食中提取能量。非洲棕榈象鼻虫(APW)生活在内部,并以高木质素树干为食。因此,他们的胆量可以藏有大量降落木质素的微生物社区。在这项研究中,我们旨在探索APW幼虫肠道内的细菌群落,特别是在各个肠道段中木质素降解的可能性方面,作为确定采矿细菌细菌木质素降解酶的生存能力的第一步,以使生物体生物素生物素生物素生物群生物体生物群生物体至生物群生物群至生物群生物群至生物素的生物分解。从APW幼虫的前身,中肠和后肠上提取细菌宏基因组DNA,并使用Illumina Miseq平台对16S rRNA基因的V3 -V4高变量区域进行了测序。对生成的数据进行了分析和分类分类,以鉴定肠道群落内的不同细菌系统型累积和每个肠道细分市场。然后,我们确定了每个幼虫肠室内与木质素降解相关的细菌的存在,多样性和丰度,作为建议木质素降解最多的肠段的基础。所有序列均分类并属于细菌王国。FIREICITES(54.3%)和蛋白杆菌(42.5%)是肠内最优势的门,随后是杆菌(1.7%)和静脉细胞杆菌(1.4%)。前身和中肠有许多类似的属,而后肠似乎是独一无二的。肠球菌,左骨杆菌,乳酸菌,Shimwellia,Megasphaera,Klebsiella,klebsiella,pectinatus,沙门氏菌,Lelliotia和肠杆菌构成了所有肠内最具幼虫的属。总体而言,含有21个属的总肠道细菌的29.5%是木质素降解者,主要是在企业和蛋白质细菌的门中发现的(分别为56.8和39.5%),然后在肌动杆菌(2.5%)和细菌(2.5%)和细菌(1.1%)中适度。最丰富的木质氨基利因属是Levilactobacillus(46.4%),克雷伯氏菌(22.9%),肠杆菌(10.7%),乳杆菌(5.9%)(5.9%),柑橘类杆菌(2.2%),corynenebacterium(1.8%),paucilactocillus(1.8%)(1.8%)(1.8%)(1.8%)(1.8%,1.8%,1.8%,综合综合综合症,综合体)在不同肠道室中发现了不同量的细菌(1.1%)和白细胞(1.0%)。前肢具有最多样化和最高的木质素降解系统型,
摘要果蝇幼虫被广泛用作模型生物体7研究,其中精确的行为跟踪能够对个体和8个种群级行为指标进行统计分析,这些指标可以为幼虫行为的数学模型提供信息。9在这里,我们提出了一个分层模型架构,其中包括三层,以促进模块化10模型构建,闭环模拟以及经验和11个模拟数据之间的直接比较。在基本层,自主运动模型能够执行12个探索。基于新颖的运动学分析,我们的模型特征是间歇性向前爬行13,该爬行13与横向弯曲相结合。在第二层中,通过在模拟环境中进行主动14传感和自上而下的运动调制来实现导航。在顶层,15个行为适应需要关联学习。我们评估了16个基于代理的自主探索,趋化性和气味偏好17测试的虚拟幼虫行为。我们的行为体系结构非常适合18个神经力学,神经或单纯的统计模型组件的模块化组合,从而促进其评估,19比较,扩展和集成到多功能控制体系结构中。20
FNBP1 PPFIA2 CPEB4A MEAF6 TRAPPC13 PTPPRUB KCNMA1A MED23 PLECA DIP2A ADGRL2A-1 EPRS1 MEF2CA TENM4-1 Pus7 TRRAP CAMTA1A NCKAP1A ADGRL2A-2 CNPRAK1G1 Mon2 VIKIAAK1AAK1AA ADGRL2B CLEC16A NRXN1A FRYA GPC6A EIF4G3B AP1G1 CLASP2 PTPRFA CASKA CASKA PTPRD-2 SYNJ1-2 PTK2AB-2 SCYL2 SCYL2 SCYL2 DOCK4B PPP6R3 ABIFFFFL3 ABIFFFFL L1CAMA PTPRUA TENM2 KCNQ5A NRG1 SUCO PTPRK PTK2AB-1 DOP1A TTC28 ERGIC3 DIP2CB DOCK4 CACN3B DCTN4 SGIP1B FRYB MAPK8IP3 SPTAN1 KIF1B RAPGEF2 CPEGGEF2 CPEF2 CPEBB4B NRG2B CAMTA1B NRG2A PPFIA4
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月25日。; https://doi.org/10.1101/2023.03.14.532648 doi:biorxiv Preprint
在成人生物体中灭活基因功能的能力对于研究诸如再生和行为等生物学过程至关重要。这是通过工程化等位基因来实现的,该等位基因可以使用CRE重组酶有条件地灭活,然后使用药物诱导的CRE重组酶灭活基因功能。最近的一些研究清楚地表明,工程在斑马鱼中的有条件等位基因的可行性。同时,实现足够程度的重组以诱导完全丧失功能的丧失仍然是一个主要限制。在此,我们通过设计由斑马鱼β-Actin2基因的内含子增强子的斑马鱼泛素启动子组成的重组泛素启动子UBB R来解决这一限制。使用PHIC31介导的靶向集成,我们证明了UBB R在所有胚胎和幼虫阶段测试的UBB R显然均优于父母启动子以及目前可用的无处不在的Creer T2驱动线。此外,我们生成的UBB R:CRER T2驱动线使成人斑马鱼心中的Floxed等位基因几乎完全失活。最后,我们证明了我们的UBB R启动子在其他基因组基因座集成时会保留高活性,从而使其独特地适合于斑马鱼的所有阶段的转基因表达。