在芝加哥大学的 Bernien 实验室,我们用单个原子构建量子计算机。量子计算听起来像是科幻小说中的东西,但自 20 世纪 90 年代末以来,小型量子计算机就以某种形式存在了。如今,量子计算机正以指数级的速度发展,世界各地的研究人员都在尝试新的想法来推进这项激动人心的技术。我们可能不应该指望很快就能有家用量子计算机,但量子计算的实用性已经发展到数十家初创公司,甚至多家大公司都在构建自己的量子计算机的地步。他们中的许多人甚至允许您租用他们的计算机来运行自己的量子程序!然而,由于这些系统的尺寸小、错误率高,量子计算仍然是一种正在开发的技术。因此,人们常说我们正处于嘈杂的中型量子 (NISQ) 时代。走出这个时代需要许多技术进步,我们的实验室正在积极致力于解决一些阻碍基于原子的量子计算系统的问题。
NIR/VIS 单频激光器的封装挑战 Björn Globisch,TOPTICA EAGLEYARD,Rudower Chaussee 29,12489 Berlin EPIC 技术会议@柏林 Fraunhofer IZM,2024 年 6 月 4/5 日
摘要:在研究和工程中,短激光脉冲是计量和通信的基础。由于紧凑的设置尺寸,通过被动模式锁定的脉冲产生特别理想,而无需主动调制需要专用的外部电路。但是,完善的模型并不能涵盖比型往返时间更快的增益媒体中的常规自动化。对于量子级联激光器(QCLS),这标志着其操作中的显着限制,因为它们表现出与间隔过渡相关的picsecond增益动力学。我们提出了一个模型,该模型对最近证明的第一个被动模式锁定的QCL的脉冲动力学提供了详细的见解。存在沿空腔的多层石墨烯所实现的不连贯的饱和吸收器的存在,通过表现出与增益介质相似的快速恢复时间,将激光驱动到脉冲状态。这种激光操作的预先未研究的状态揭示了增益培养基对不均匀分布的腔内强度的良好响应。我们表明,在存在强
摘要 - 在这封信中,我们通过光学注射增益开关(GS)半导体纳米仪(SNLS)来研究光频梳(OFC)的产生。使用速率方程进行了计算,其中包括percell腔体增强的自发发射因子F和发射偶联因子β。在分析中,评估了F的影响,以改变主和从纳米剂之间的注射强度和频率不吻。通常,由于在广泛的参数空间上进行光学注射,可以实现注射锁定区域,其中生成的OFC具有宽10 dB的频率跨度(F 10),高载体与噪声比(CNR)和窄线路。此外,通过提高注入强度,可以进一步增强F 10和CNR。此外,F 10和CNR分别随着f的增加而减小和增加。这些新颖的发现是基于光子整合电路中光学注射的GS SNL的简单和紧凑源OFC来源的开发。
Ultrafastber激光器广泛用于各种军事和平民应用中,1 - 3,例如光学通信4和精确加工。5,6产生超短脉冲的主要方法之一是被动模式锁定的技术,其中关键是将饱和吸收器(SA)引入激光腔。模式锁定的ber激光器可以使用合适的配对作为SAS实现,从而在性能和输出稳定性方面具有优势。6现有的饱和吸收材料包括半导体可饱和吸收镜7,8和由石墨烯,9,10钼二钼de(MOS 2)11,12和黑磷所代表的二维材料。13,14此外,多种材料已用于超快激光器中的模式锁定设备,包括SNSE 2,15 GEAS 2,16 RGO-CO 3 O 4(参考17)和WCN。18然而,对SAS使用的新材料的调查仍处于早期阶段。因此,有必要探索新型材料作为具有出色非线性光学特性的替代SAS,以实现模式锁定的超短脉冲激光器。
主动纤维激光器在行业中广泛用于不同的制造应用,从切割到焊接和添加剂制造。最近引入了多核光纤激光器,这些源可以灵活地将功率密度分布(PDD)从常规高斯曲线转换为环形形状。尽管仍在探索新颖光束比传统束相比的优势,但建模工具来定义PDD形状的需求变得更加明显。这项工作研究了高斯对环轮廓的分析建模,目的是朝着标准化参数转向制造过程。所提出的模型结合了高斯和环形成分,以定义新型梁形状。在评估的不同模型中,圆环和多高斯方法表现出最佳拟合质量,从而实现了PDD描述性指标的定义。开发的建模框架已在具有双核光源的工业激光粉末融合(LPBF)系统上进行了验证。评估了沿传播轴的光束形状变化,以分析使用开发的梁参数散腹的效果。最终,最佳性能模型通过板体验的珠子进一步验证,以解释如何使用高斯或环形梁曲线共同利用模型系数来预测材料响应。
管制国家图表(见第 738 部分补充编号 1) NS 适用于整个条目 NS 第 2 列 AT 适用于整个条目 AT 第 1 列 报告要求请参阅 EAR 第 743.1 条,了解根据许可例外和经过验证的最终用户授权的出口报告要求。基于列表的许可例外(见第 740 部分,了解所有许可例外的描述) LVS:3000 美元;对于 6A001.a.1.b.1 物体检测和定位系统,其发射频率低于 5 kHz 或声压级超过 210 dB(参考 1 m 处 1 μPa),对于工作频率在 2 kHz 至 30 kHz 之间的设备; 6A001.a.1.e、6A001.a.2.a.1、a.2.a.2、6A001.a.2.a.3、a.2.a.5、a.2.a.6、6A001.a.2.b;受 6A001.a.2.c 控制的、以及“专门设计”用于拖曳式声纳实时应用的处理设备
外部腔内波长激光,其特征在于其特殊的时间连贯性和广泛的调谐范围,它是尖端的纤维感应,例如纤维传感,刺激和光谱镜的至关重要的光源。光学通信技术的新兴增长升级了对线宽和广泛调整范围狭窄的激光器的需求,从而促进了外部波长 - 腔内扫描二极管激光及其多样化应用的迅速发展。本文全面地介绍了这些激光器的配置和操作原理,并对其发展状态进行了深入的审查,专门针对那些具有狭窄线宽和较宽调整范围的人。目的是为参与波长激光的开发和应用的研究人员提供宝贵的参考。
©2023作者。本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许使用,共享,适应,分发和繁殖任何任何媒介或格式,只要您适当地归功于原始作者和来源,就提供了与Creative Commons许可证的链接,并指示了Ifchanges。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。文章的创意共享许可中未包含材料,并且您的预期用途不允许法定法规或超过允许的用途,您将需要直接从版权所有者那里获得persermission。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。