ASSL(高级固态激光器)是国际会议,致力于固态激光器的材料和来源方面的最新进展。材料包括光学,材料科学,凝结物理学和化学方面的进展,与激光和光子学新材料的开发,表征和应用有关。这些包括晶体,玻璃和陶瓷以及功能化的复合材料,从纤维和波导到具有预分配的光学特性的工程结构。相干和高亮度辐射源包括激光器以及泵和非线性设备。重点是科学技术的进步,以提高功率,效率,亮度,稳定性,波长覆盖范围,脉冲宽度,成本,环境影响或其他特定于应用的性能。我们希望读者能喜欢36个顶级文章的这一问题,这些文章强调了该领域的最新状态。我们感谢所有作者和审稿人的出色贡献。,我们还要感谢Optica员工的Carmelita Washington和Rebecca Robinson在整个启动此功能问题以及审查和生产过程中的出色工作。收益媒体是固态激光器的核心,新材料和相应的激光仍然是会议的核心。yb掺杂的材料是这次ASSL会议的重点,这尤其是由于在二极管泵送的YB掺杂激光器30周年的庆祝话题上。Qi等。Qi等。使用Yb:YAG的进步由Cvrček等人报告,在该磁盘几何形状中探索了对SIC的热点[1]。还报告了Yttrium铝硅酸盐纤维的制造,其Yb 3 + Yb:YB陶瓷纳米植物及其在单频纤维激光器中的应用[2]。Wu等人的浓度纤维的平均功率水平继续增加。在输出功率下,从掺杂的YB纤维中展示6.2 kW,光学至光学效率为82%,梁质量系数约为1.9
据报道,垂直外部空腔中的高度稳定的二极管无环状液体染料激光。设计很简单(无需制造过程步骤,不需要流体电路),紧凑(〜cm尺寸)和具有成本效益。报道了18%的光学效率为18%,具有出色的光稳定性 - 在50 Hz处140万脉冲后,没有效率下降,该值与流动系统相当,并且远高于有机固态激光器可实现的值。我们表明,热效应在稳定性和该激光器的动力学上都是中心的。在不同的泵脉冲持续时间/重复速率上详细研究了激光堆积和关闭动力学;他们揭示了脉搏缩短,泵脉冲持续时间和重复速率增加,这被证明是由于热透镜衍射损耗引起的。此激光结构提供了一个非常方便,简单的平台,用于测试或收集解决方案可供处理的增益材料。
组件[3,4],但是SI光源的发展远远落后于其他组件[5-8]。组IV材料的间接带隙性质使它们效率低下,因为它们是泵送的发光来源[9],而III – V QD激光器在直接在SI底物上生长的III – V QD激光器对实现高效率和低成本显示出希望。由于自组装QD的三维量子限制,INAS/GAAS QD激光器,这些激光器以低阈值电流密度[4、10-12]呈现出较高的性能[4、10-12],并且对基于SI的PICS的温度和缺陷高度耐受性[13]受到了极大的关注[14-20]。然而,由于载体对较高状态和/或屏障状态的热激发,QD激光器的性能不足理论理想[21-24]。尽管电荷中立性可能
纵观激光粒度测量的发展历史,曾使用过许多光源作为粒子入射光的光源。其中最流行的是激光器。20 世纪 70 年代初,Microtrac 使用氦氖气体激光器作为准直相干光源,该光源提供近乎单一波长,是光散射粒度测量所必需的。电子技术的进步导致了半导体激光器(俗称激光二极管)的发展。因此,在 20 世纪 80 年代中期,Microtrac 开始使用这些类型的激光器,以便为客户提供长寿命稳定性和应用,从而降低服务要求和维护成本。毫无疑问,Microtrac 已证明这些设备具有极高的可靠性和稳定性。1990 年,随着超细粒度分析仪 (UPA) 的出现,它们被广泛使用,并扩展到采用动态光散射测量纳米颗粒的现代 Nanotrac 型号。本文解答了粒度人员考虑激光器类型时经常出现的问题。它还试图解决合理的光学设计原理和技术知识如何解决仪器设计过程中的问题。
摘要:氧化钇(Y 2 O 3 )因其在各种高强度结构部件、微电子和光电子器件中的潜力而受到关注,但这种有前途的材料的非线性光学研究尚未实施。本文不仅理论计算了Y 2 O 3 的电子能带结构,而且以光纤激光器为平台验证了Y 2 O 3 的光学非线性。同时,通过使用不同厚度的Y 2 O 3 可饱和吸收体,进一步探究了样品厚度对激光性能的影响。结果表明Y 2 O 3 不仅具有良好的光学非线性,而且通过调节Y 2 O 3 的厚度有利于超快光子的研究。因此,Y 2 O 3 可以作为一种潜在的可饱和吸收体候选者进行深入的研究和应用。
为了满足诱饵态 MDI-QKD 的安全性证明,重要的是弱相干态之间的相位随机化。我们的装置本质上是通过增益切换主激光器的性质实现这一点的:通过在每个时钟周期内定期将激光器驱动到阈值以下,持续足够的时间使激光腔中没有光子,每个脉冲都从自发辐射中增长 - 即由随机真空涨落有效地播种。通过将每个发射器中的未衰减脉冲串(每个脉冲的持续时间为 75 ps,如补充图 1a 所示)通过非对称马赫-曾德尔干涉仪 (AMZI) 来确认这一点,其中一条臂延迟以干扰连续的相干态。在光电二极管和示波器上测量输出强度,然后进行处理以形成 10 5 个脉冲中心的输出强度直方图。直方图(补充图 1b)展示了均匀分布的随机相对相位 φ 的脉冲干涉预期呈现 1 + cos(φ) 形状,其中考虑了实验的不确定性[1]。
在 (001) Si 平台上外延生长 III-V 激光器正成为低成本、节能和晶圆级光子集成电路的终极集成策略。随着在 III-V/Si 兼容衬底上生长的激光二极管的性能向商业化发展,外延 III-V 激光器和 Si 基波导之间的光接口问题变得越来越紧迫。作为替代方案,选择性区域生长在 Si 上产生无缓冲 III-V 激光器,从而从本质上促进与 Si 光子学的有效光耦合。由于选择性生长的无位错 III-V 晶体的尺寸通常限制在亚波长尺度,因此主要挑战在于实现电驱动激光器,特别是如何在不引起大的光吸收损失的情况下对金属触点进行图案化。在本篇观点中,我们简要概述了在 (001) Si 平台上选择性生长的最先进的 III-V 族激光器,并讨论了这种集成方法的前景,重点介绍了实现电驱动设备的前景。我们重点介绍了选择性异质外延提供的独特优势以及实际应用面临的挑战和潜在解决方案。
我们通过合并自制模式选择耦合器(MSC)来展示可见光的全纤维涡流激光器。绿色或红色波带的MSC是通过专门设计和融合单模纤维(SMF)和几个模式纤维(FMF)来制造的。分别在绿色和红色波长下分别从LP 01到LP 11模式的功率分离器和模式转换器,插入可见漏洞的MSC作用。红光全纤维涡流激光器由10厘米Pr 3 + /yb 3 +:Zblanfer,纤维bragg螺纹,纤维末端 - 面镜和635 nm的MSC形成,可产生涡流束,涡流束在634.4 nm and Autpute power ob±1处产生涡流±1。绿色全纤维涡流激光器由12厘米Ho 3 +:Zblanfier,两个纤维尾镜和550 nm的MSC组成,该MSC在548.9 nm处产生OAM±1的涡流梁,输出功率为3 mW。
[11],文献中缺乏关于 ICL 器件性能如何依赖于层结构参数变化的讨论和研究,这可能使一些人持怀疑态度。通过对源电池和基底进行非常稳定的温度控制,可以将结构偏差降至最低。即便如此,由于 ICL 结构中采用的 III - V 族材料范围以及生长它所需的时间长度,合金成分和层厚度的一些意外变化是不可避免的。在本文中,通过研究由两个结构无意中与设计有很大偏差的 ICL 晶圆制成的器件,我们评估了器件性能特征在多大程度上能够承受无意的结构变化。此外,我们证明即使与设计有很大偏差,器件性能仍然可以相当好。需要注意的是,我们报告的 ICL 耐久性并不一定适用于 QCL,因为 QCL 的快速声子散射时间在皮秒量级(甚至更短)。由于这与载流子带内渡越时间相当,因此 QCL 中的粒子数反转条件更具挑战性。相比之下,对于 ICL,带间跃迁时间在纳秒量级 - 比导带或价带中的声子散射时间和带内渡越时间长三个数量级。因此,ICL 中的两个带间跃迁态之间可以很好地建立粒子数反转,而不必像 QCL 那样依赖于不同带内状态之间微妙的能级排列和快速声子介导的耗尽效应