dyfyniad o'r fersiwn a gyhoeddwyd / for发布版本(APA):Hong,Y.,Y.,Zhong,Z。,&Shore,K。A. < / div>(2024)。延迟反馈半导体激光器中的时间延迟签名抑制,作为复杂生理网络中反馈控制的范式。网络生理学的边界,第3条,第1330375条。https://doi.org/10.3389/fnetp.2023.1330375
自第一台激光器发明以来,人们对高能激光器的追求从未停止。20世纪60年代激光与航天的融合推动了高能激光器的第一次革命,化学火箭发动机的出现为气流和化学激光器的诞生提供了新的动力,最终使兆瓦级激光器从梦想变成了现实。如今,高能激光器的发展已进入电时代和火箭发动机时代。目前电火箭发动机的特性与高能激光器的目标高度一致,包括电驱动、高效散热、极小的介质消耗以及极轻的重量和体积,这引发了激光与航天的第二次融合,推动了对高能激光器潜力的探索。作为一种探索性尝试,展示了一种新型二极管泵浦亚稳态稀有气体激光器结构,其增益发生器类似于电火箭发动机,以提高功率缩放能力。
二氧化硅的衰减非常低的衰减促进了基于纤维的数据通信的普遍性。今天被认为是玻璃的内在特性,但这仅仅是因为外部损失来源(因此是热量)已被去除。过渡金属杂质,特别是Cu和Fe,在1970年代建立的通信波长中扮演着最重要的作用[5,6]。要消除这些外部吸收剂,以玻璃(例如SICL 4)和杂质(例如Fe 2 Cl 6)前体之间的蒸气压差形式的热力学,并立即使用。对这种重要性的良好回顾,但在当前的光纤社区中被遗忘了。[7]。通过涉及氯的明智干燥方案,在长途纤维中还减轻了玻璃中OH物种引起的衰减。现代二氧化硅纤维基本上没有外部损失来源,因此产生热量,这完全是由于化学蒸气沉积(CVD)过程的材料科学。但是,如第2.1.2和2.2节所述,CVD对本质上低损耗纤维的祝福在纤维核的组成可卸载性方面会导致诅咒[8]。
在本信中,我们介绍了基于五叠自组装 InAs/InAlGaAs 量子点作为活性介质的长波长微盘激光器,这些量子点通过固体源分子束外延在 InP(001)衬底上生长。直径为 8.4 lm 的量子点微盘激光器在脉冲光泵浦条件下在室温下工作。实现了 1.6 lm 的多波长激光发射,低激光阈值为 30 lm W,品质因数为 1336。通过收集到的近场强度分布的“S”形 L-L 曲线、线宽变窄效应和强散斑图案验证了激光行为。所展示的具有低阈值和超紧凑占地面积的长波长激光器可以在集成气体检测和高度局部化的无标记生物和生化传感中找到潜在的应用。
6A002 中描述的商品。 (5) 第 744.9 节规定,如果 ECCN 6A002 中描述的商品被出口、再出口或转让(国内)用于军事最终用户使用或纳入 ECCN 0A919 控制的物项,则需要许可证。 (6) 有关“受 ITAR 约束”的读出集成电路,请参阅 USML 类别 XII(e) 和 XV(e)(3)。 (7) 有关 6A002.a.1.b 或 6A002.a.1.d 规定的“专门设计”的光学传感器的掩模和掩模版,请参阅 6B002。
摘要:在行业标准的SI平台上节能和超级反应光源的整体整合已成为一种有前途的技术,可以实现完全集成的基于SI的光子集成电路。最近,由于其独特的优点,包括针对结构缺陷和疾病的鲁棒性,使用拓扑保护的缺陷模式通过使用拓扑保护的缺陷模式进行了广泛的研究。然而,由于Si和ⅲ–ⅴ材料之间的显着材料差异,先前对半导体拓扑激光器的证明在其天然底物上受到限制。在这里,我们通过实验报告了超低阈值连续波泵送的单模式INAS/GAAS量子点拓扑拓扑状态纳米层单层单层整合在CMOS兼容SI(001)底物上。我们的结果代表了针对SI光子学的超跨和高性能集成的纳米级光源的新途径,并为拓扑光子学启用了有希望的应用。关键字:纳米剂,拓扑绝缘子激光器,角状态纳米剂,硅光子学,量子点
具有异质整合技术的Hutonic Integrated Ciress(PIC)已成为硅光子学的激烈研究领域。1 - 3)他们将不同的材料技术引入商业硅芯片的潜力为将高性能图片与各种光学功能进行大规模整合开辟了道路,使用常规的硅开机器(SOI)平台实现了具有挑战性的挑战。4 - 6)尤其是,通过直接键合的混合III - V/SOI激光器的杂基整合为电信光源提供了适当的解决方案,用于电信和数据中心应用程序接近1.3和1.55μm波长范围。2,7)通过使用分布式的bragg refector,Ring Resonator和Loop Mirror设备,通过使用分布式的Bragg Remotector和Loop Mirror设备来实现在SOI电路内的这种集成在SOI电路内的这种集成。8 - 12)此外,还报道了Hybrid III - V/SOI环激光器,其中光线从III - V/SOI环激光器耦合到通过方向耦合器耦合到Si Bus-WaveGuide。13 - 16)
我们提出了一种将太赫兹 (THz) 频率量子级联激光器 (QCL) 完全集成到稀释制冷机内的方案,以便将 THz 功率定向传输到样品空间。我们描述了位于制冷机脉冲管冷却器级上的 2.68 THz QCL 的成功运行,其输出通过空心金属波导和 Hysol 热隔离器耦合到位于毫开尔文样品级上的二维电子气 (2DEG) 上,实现了从 QCL 到样品的总损耗 ∼− 9 dB。热隔离器限制了热量泄漏到样品空间,实现基准温度 ∼ 210 mK。我们观察了 QCL 在 2DEG 中引起的回旋共振 (CR),并探讨了 QCL 对制冷机所有阶段的加热影响。在低至 ∼ 430 mK 的电子温度下可以观察到由 THz QCL 引起的 CR 效应。结果表明,在稀释制冷机环境中利用 THz QCL 以及在极低温(< 0.5 K)凝聚态实验中传输 THz 功率是可行的。
资料来源:欧盟。2020 年 11 月委员会报告 - 奥地利环境署和 Borderstep 研究所发布的节能云计算技术和生态友好型云市场的政策