图2在420°C下获得的Na交换TINCL的X射线衍射模式的Rietveld分析(样品A)。开圆显示了观察到的数据点,实线表示计算出的衍射模式。
摘要。对量子时代的技术进步需要安全的通信,量子计算和超敏感的传感能力。分层量子材料(LQM)具有显着的光电和量子性能,可以将我们引入量子时代。电子显微镜是在原子和纳米尺度上测量这些LQM的首选工具。另一方面,LQM的电子辐照可以修改各种材料特性,包括产生结构缺陷。我们回顾了不同类型的结构缺陷,以及电子弹性和非弹性造成的诱导过程。使用电子辐照的LQM的光电和量子性能的控制,包括创建单光子发射器。鼓励通过其他分层材料封装来保护电子辐射引起的LQM损坏。我们最终深入了解挑战和机会,包括使用电子束创建新的结构。
本文档是公认的手稿版本的已发表作品,该作品以ACS应用纳米材料的最终形式出现,版权所有©2020 American Chemical Society在同行评审和发行商的技术编辑后。要访问最终编辑和发布的工作,请参见https://doi.org/10.1021/acsanm.0c02513。
摘要在广阔的杂化有机金属卤化物钙钛矿(HOIP)的材料综合和表征中的持续进展已被主要在光电应用中的非凡特性所推动。这些作品强调了晶格振动的特殊作用,该作用与电子强烈相互作用,从而导致影响光学性质的耦合态。在这些材料中,分层(2D)HOIP已成为一个有前途的材料平台,以解决其三维对应物的某些问题,例如环境稳定性和离子迁移。分层HOIP由由金属卤化物八面体制成的无机层组成,这些层由由有机阳离子组成的层分隔。他们不仅对应用吸引了很大的兴趣,而且由于其晶体结构可调性而引起了丰富的现象学。在这里,我们概述了通过拉曼光谱以几种配置和设置来实现的主要实验发现,以及它们如何促进这些迷人材料的复杂结构性质。我们关注声子频谱如何来自几个因素的相互作用。首先,无机和有机部位的运动是耦合的,其典型模式在能量上截然不同。尽管如此,它们之间的相互作用是相关的,因为它导致低对称性晶体结构。然后,外部刺激的作用,例如温度和压力,它们通过改变晶格的对称性,八面体倾斜和分子的排列而诱导相变的相变。最后,强调了电荷载体和光子声子之间耦合的相关作用。
通过用云托管的RAM内存执行此操作,就其术语而言,该过程变为“超级快速”。他补充说:“他们可以在很短的时间内扫描大量流量。那部分是许多其他供应商没有做的事情。它们是按顺序扫描,而不是并行。”该功能代表了ZScaler的架构分化的独特点作为一个在全球150个数据中心运行的云本地平台,Zscaler分析了边缘的流量,靠近用户。ZScaler的单扫描多动作(SSMA)体系结构也意味着每个数据包仅一次扫描一次,但随后通过几个不同的系统进行了分析。其他解决方案通常是雏菊链的系统。结果,Zscaler速度要快得多。
1。引言创建照片现实和动态的人类化身具有广泛的应用,包括虚拟试验,电影和游戏制作,虚拟助手,AR/VR以及远程介绍。传统上,此过程需要培训,这使得普通用户无法访问。最近,基础扩散模型的进步加速了旨在使3D Human Avatar创建民主化的研究工作,从而可以通过文本[16、46、51、88]或图像[39]易于用户控制。早期的3D人头像创作的方法将头发,身体和衣服作为单层表示,因此由于其纠缠的几何形状,很难独立模拟或编辑每个区域。为了解决这一限制,重新制作的工作使用了分层结构来分别反映身体,服装或头发[27,36,82,96]。,这些方法中的许多方法都依赖于nerf [58]等隐性代表来定义服装或毛发地理。尽管隐式表示有助于从基础扩散模型中利用先验知识,但它们在现有模拟器中进行动画挑战,这是由于身体运动而引起的头发和服装的现实运动。结果,这些方法难以生产动画时看起来很现实的化身。因此,出现了一个自然的问题:我们可以设计3D化身生成管道,该管道可以利用图像扩散模型中的丰富的先验知识,同时与现有的模拟管道兼容?解决此问题的关键挑战在于连接当前模拟器和文本驱动的头像生成管道中使用的不同表示。前者通常会重新使用平滑清洁的非紧密网格或特定设计的头发链,其拓扑是可以优化的,并且很难约束。十大的后者采用隐式表示(例如NERF [58]或SDF [83]),尽管它们可通过嘈杂的监督信号来优化来自扩散模型的嘈杂监督信号,但不能轻易地转换为适合模拟的开放网格或发束。为了解决这些问题,我们提出了一个新颖的框架Simavatar,该框架从文本提示中生成了3D人体化身,可以很容易地通过现有的头发和服装模拟器来动画。关键思想是为不同的人类部位(例如头发,身体和服装)采用合适的代表,并利用图像扩散模型和模拟器的先验知识。为此,我们提出了使用头发束代表人头发,身体和饰物的几何形状,参数身体模型SMPL [55],
与之前被禁的研究相比,意识研究正成为科学前沿的几项重大挑战之一。随着上个世纪热情的先驱者应用双眼竞争、裂脑、盲视和其他范式(Seth,2018),神经科学中出现了意识的经验理论。目前,情况已经达到了一个充满希望和挑战的临界点,因为大量的意识理论(ToC)都声称自己有各自的合理性,而这些理论都有特定的经验支持,它们提出的猜想导致了不同的预测(Del Pin 等人,2021 年;Signorelli 等人,2021 年;Seth 和 Bayne,2022 年;Yaron 等人,2022 年)。人们讨论了各种理论,看来这个问题正变得越来越普遍。目前,不同团体和领域之间缺乏合作,阻碍了意识理论的进步。然而,未来有望出现一种不受个体理论界限限制的基础理论(Koch,2018)。在此过程中,四种主要的 ToC 获得了最多的关注( Seth and Bayne,2022):整合信息理论(IIT)(Tononi,2008;Oizumi 等,2014;Tononi 等,2016)、全局神经工作空间理论(GNWT)(Dehaene,2014;Mashour 等,2020)、高阶理论(HOT)(Lau and Rosenthal,2011;Brown 等,2019),以及循环加工理论(RPT)(Lamme,2018)和预测加工理论(PP)(Seth and Hohwy,2021)。简而言之,IIT 将任何有意识的体验与相应状态下系统的最大不可约因果结构联系起来; GNWT 认为,由广泛的神经激发和跨多个认知模块共享信息所引发的全局工作空间是实现意识的关键;HOT 基于意识体验的高阶结构,其中“我”意识到“某事”(“某事”的表征是一阶的)。同时,RPT 和 PP 强调自上而下的处理在有意识的心理活动中的重要性。第五种方法并没有将意识归因于神经活动,而是将意识与跨多个时空尺度的底层物理过程联系起来。作为一个典型且著名的范式,精心策划的客观还原 (Orch OR,参见 Hamerooff 和 Penrose,2014) 理论声称,根据哥德尔不完备定理 (Penrose,1999),理解、自由意志或洞察力等心理方面无法用图灵机计算。它将意识与量子力学过程联系起来。意识场论将不确定的粒子状和波状现象比作“神经元-波二象性”(John, 2001),并提出大脑中广泛存在的电磁(EM)场可能是意识的物理相关物(Hunt and Jones, 2023)。
摘要:从全球来看,癌症治疗仍是一个主要问题。随着纳米技术的最新发展,基于层状双氢氧化物 (LDH) 的纳米系统因其 pH 依赖性生物降解性、优异的生物相容性、易于表面改性、阴离子交换容量和高化学稳定性而受到特别关注,为癌症治疗带来了巨大的潜力。通过将无机、有机或生物分子插入其层状晶格中,可以从层状双氢氧化物 (LDH) 开发出具有双重或多功能特征(包括抗癌能力)的新型混合材料。尽管已经发表了出色的研究,但很少有综述论文讨论这些重要且有希望的发现,以刺激基于 LDH 的纳米系统在癌症治疗领域的持续发展。因此,本文研究重点关注基于 LDH 的化疗纳米系统在癌症治疗方面的最新进展。本综述中使用的信息来自之前发表的研究,并从多个期刊渠道检索而来。这些报告讨论了基于层状双氢氧化物的化疗纳米系统在癌症治疗中的应用。研究表明,层状双氢氧化物可用于开发单一或复合纳米系统,以精确分配治疗成分,而不会对纳米医学领域造成累积损害。 DOI:https://dx.doi.org/10.4314/jasem.v27i4.24 开放获取政策:JASEM 发表的所有文章均为 AJOL 支持的 PKP 下的开放获取文章。文章发表后立即在全球范围内提供。无需特殊许可即可重新使用 JASEM 发表的文章的全部或部分内容,包括图版、图表和表格。版权政策:© 2022 作者。本文是根据知识共享署名 4.0 国际 (CC-BY-4.0) 许可条款和条件分发的开放获取文章。只要明确引用原始文章,即可在未经许可的情况下重新使用文章的任何部分。引用本文为:OMONMHENLE,S. I;IFIJEN,IH (2023)。基于层状双氢氧化物的化疗纳米系统在癌症治疗中的进展。应用科学杂志。环境。管理。27 (4) 815-821 日期:收到日期:2023 年 2 月 7 日;修订日期:2023 年 3 月 18 日;接受日期:2023 年 3 月 28 日出版日期:2023 年 3 月 31 日关键词:层状双氢氧化物;纳米系统;癌症治疗;耐药性由于定制或靶向治疗等替代疗法的出现,癌症的治疗方法已经发展(Maliki 等人,2022 年;Ifijen 等人,2022 年),但它们仍然有很多缺点。光疗法(Ifijen et al., 2023a; Ifijen et al., 2023b)由于其高度选择性,是最有前景的治疗方法之一,可相对容易地用于治疗甚至深层癌症,例如肝肿瘤。光疗中使用的两种主要治疗方法是光热疗法 (PTT) (Zhong et al ., 2021) 和光动力疗法 (PDT) (Perni et al ., 2021),后者利用光产生治疗性活性氧 (ROS) (Algorri et al ., 2021)。这些治疗方法通常用于增加总
吉利安格大学,杭州大学,中国摘要:在这项研究中,我们使用VASP(VIENNA AB INTIRIO仿真)软件包进行了第一原理计算,以研究晶体结构,电子结构和光学特性,用于新的分层三层金属chalcegenide,EU 2 Inte 5。我们的结果表明,欧盟2 Inte 5是一种非零间隙金属,其分层结构为特征,其特征是强层内原子键和弱层间相互作用,这表明其潜在的应用是纳米材料。我们还研究了光学特性,包括复杂进型常数的吸收系数,虚构和真实部分,并发现EU 2 Inte 5在紫外线和可见光和蓝绿色的光线以及蓝绿色的光线下表现出强烈的光响应特性,峰值在389 nm和477 nm和477 nm和477 nm的波长处。这表明它可以用于开发UV(紫外线)检测器和其他光电设备。此外,由于其强吸收,低损失和低反射率,EU 2 Inte 5具有用作太阳能电池中有前途的光伏吸收层的潜力。关键词:三元金属醇酯,第一原理计算,分层结构,光学特性。1。简介