标准模型(比如 PAC 框架)并未捕捉到标记数据和未标记数据之间的区别,而这种区别催生了主动学习领域,在主动学习中,学习者可以要求特定点的标签,但每个标签都需要付费。这些查询点通常从未标记的数据集中选择,这种做法称为基于池的学习 [10]。目前也有一些关于人工创建查询点的研究,包括大量理论成果 [1, 2],但这种方法存在两个问题:首先,从实用角度来看,这样产生的查询可能非常不自然,因此人类很难进行分类 [3];其次,由于这些查询不是从底层数据分布中挑选出来的,因此它们在泛化方面的价值可能有限。在本文中,我们重点关注基于池的学习。
农用无人机集机器人、人工智能、大数据、物联网等技术于一体,被广泛应用于播种、地块监测、作物病虫害检测、农药化肥喷洒等各类农业作业,大大提高农业生产效率、解放劳动力(Kim et al.,2019),正在成为精准农业航空领域的一股生力军(Wang et al.,2019)。与传统农业机械相比,农用无人机具有体积小、重量轻、便于运输,飞行控制灵活等特点,具有作业精准、高效、环保、智能、使用方便等特点。但很多时候,飞行过程中农用无人机载荷的实时变化会影响其速度、精度和飞行轨迹稳定性。徐建军等(2019)指出,农用无人机在作业过程中应时刻保持良好的飞行姿态,提高作业效率。魏等提出了一种使用 PID 控制器和鲁棒 TS 模糊控制方法实现 AUAV 飞行轨迹稳定性的飞行动力学模型。对于不同的飞行条件,该模型可以在飞行路径中实现一定的稳定性,以抵抗负载扰动。
摘要 本研究的目的是研究电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对患有特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视觉感知的影响。本研究的调查是半实验研究,前测和后测采用单组,统计方法为混合方差分析。统计人群是德黑兰复活四所女孩 Maad 小学三年级、四年级、五年级、六年级的全部 216 名学生,其中 10 人通过随机抽样和可用抽样进行测量。为了收集信息,使用了(Susan pickering 工作记忆测试、Visconsin 卡片分类测试和 Frostig 测试)。结果表明,特定学习障碍(阅读、写作、数学)学生与正常学生在工作记忆和空间视知觉等方面存在差异,而电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视知觉有影响。 关键词:工作记忆 空间视知觉 学习障碍 电脑游戏 引言 特定学习障碍是指一组异质性障碍,其特征是在言语、阅读、写作、答题或数学技能的习得和使用上存在显著差异。学习障碍是一种在使用口头或书面语言方面存在一种或多种显著障碍,在听、想、说、读、写、拼写或进行数学计算的能力上存在缺陷。特定学习障碍是一种影响儿童接收、处理、分析或存储信息能力的问题。这种障碍会使儿童难以阅读、写作、拼写或解决数学问题 [1]。学生特定学习障碍的主要特征包括:自然智力水平、学习成绩低于预期、学习速度慢、认知发展、教育基础重复、学习水平差异、不同学习、课程学习。能力和技能之间存在显著差异,注意力范围狭窄[2]。换句话说,他们尽管智力正常,却无法学习,虽然成长的各个方面与生物成熟度有直接关系,但一般认为生物和非生物因素都可以发挥作用[3]。人类的学习工具随着环境而变化。如果今天的儿童和青少年
3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。 *相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。 缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。 在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。 我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。 我们在计算上筛选了跨越各种化学类别的12,000多种化合物。 对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。 值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。 其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。 患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。*相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。我们在计算上筛选了跨越各种化学类别的12,000多种化合物。对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。我们的工作证明了在与ML串联串联中使用表型筛选的使用可以有效地识别具有很少已知分子靶标的高度异质指示中个性化处理的治疗铅。关键字:胶质母细胞瘤,人工智能,药物发现,机器学习简介胶质母细胞瘤多形(GBM)是人类成年人中最常见和最具侵略性的原发性脑肿瘤,其特征是遗传驱动因素的实质异质性和肿瘤微环境1-3。在过去20年中,新诊断的GBM患者的护理标准包括手术,替莫唑胺(TMZ)和电离辐射(IR),延长了12个月至15个月患者的总体生存期4,5。大规模的基因组分析增强了我们对GBM分子生物学的理解,后者支持
实施,实验和结果38 5.1。软件实施38 5.1.1 TensorFlow 38 5.1.2 Pendulum驱动器38 5.1.3 Pendulum Environment 38 5.1.4 Raspberry Pi Software 39 5.1.5深钢筋学习39 5.2。硬件实现39 5.2.1带电机驱动器的Raspberry Pi 39 5.2.2带电机旋转编码器的Raspberry Pi 40 5.2.3 Raspberry pi搭配摆旋转旋转编码器40 5.3。实验实现和设置40 5.3.1环境40 5.3.2参数41 5.4。仿真结果42 5.4.1应用突然变化44
英国利兹大学利兹大学的地理学和水学院; B英国利兹大学土木工程学院B; C以色列贝特达根农业部土壤侵蚀研究站土壤保护部; D Kinneret Limnological实验室,以色列海洋学和林木研究,以色列米格达尔; E Zuckerberg水研究所,雅各布·布莱斯坦(Jacob Blaustein)的沙漠研究研究所,以色列内盖夫本·古里安大学; F Yorkshire Water Services Ltd,英国布拉德福德; G德国玛格德堡的Helmholtz环境研究中心水生生态系统分析与管理部; H英国伯明翰伯明翰大学地理,地球与环境科学学院; I IHCANTABRIA - 西班牙桑坦德市的de la la cantabria Instituto dehidráulicaInstituto; J布里斯托尔大学布里斯托尔大学工程,数学和技术学院J; K Escuela de Ingenieria y Ciencias,Tecnologico de Monterrey,墨西哥Nuevo
背景和目标:由于失去随访的患者的数量,纵向研究中缺少数据是一个无处不在的问题。内核方法通过成功管理非矢量预测因子(例如图形,字符串和概率分布)来丰富机器学习场,并成为分析由现代医疗保健诱导的复杂数据的有希望的工具。此pa-提出了一组新的内核方法,以处理响应变量中缺少的数据。这些方法将用于预测糖化血红蛋白(A1C)的长期变化,这是用于诊断和监测糖尿病进展的主要生物标志物,以探索探索连续葡萄糖(CGM)的预测潜力。
VHS是排除或消除狗心脏病的有用工具(Guglielmini等人。2009)。 当可将二极管造影不可行时,VHS也可以用作识别B2期退行性瓣膜疾病患者的替代品,这是启动心脏疗法的阈值(ITO 2022)。 补充,随着时间的推移,VHS的绝对VHS和变化已被证明可以预测多项研究的心力衰竭开始(Boswood等人。 2016,2020)。 VHS确实具有一定的可变性来源。 两项荧光镜研究的平均变化在心脏周期的收缩期和舒张期之间的平均变化约为0.3至0.4。 在呼吸周期的灵感和外向阶段之间也可以平均变化0.2椎骨(Olive etal。 2015)。 最后,人类的可变性研究表明,不同读取器的平均差异约为0.4至1.0椎骨(Hansson等人。 2005)。 最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人 2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2009)。当可将二极管造影不可行时,VHS也可以用作识别B2期退行性瓣膜疾病患者的替代品,这是启动心脏疗法的阈值(ITO 2022)。补充,随着时间的推移,VHS的绝对VHS和变化已被证明可以预测多项研究的心力衰竭开始(Boswood等人。2016,2020)。VHS确实具有一定的可变性来源。两项荧光镜研究的平均变化在心脏周期的收缩期和舒张期之间的平均变化约为0.3至0.4。在呼吸周期的灵感和外向阶段之间也可以平均变化0.2椎骨(Olive etal。2015)。最后,人类的可变性研究表明,不同读取器的平均差异约为0.4至1.0椎骨(Hansson等人。2005)。 最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人 2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2005)。最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2020,Li等。2020)。计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。2021)。此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。2017)。2021,Baisan&Vulpe 2022,Wiegel等。此外,可以根据狗品种,身体状况和心脏状况进行VHS测量的其他差异来源(Puccinelli等人。2022)。本研究的目的是评估使用简化的Sanchez方法的使用VHS算法的性能与使用Buchanan方法在三位董事会认证的兽医心脏病学家之间分配的1200个X光片相比,使用了1200个X射线照片。
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
最近(2022 年 6 月 30 日),《科学美国人》发表了一篇题为《我们要求 GPT-3 撰写一篇关于自己的学术论文——然后我们试图让它发表》的文章(Thunström,2022 年)。在这种情况下,GPT-3 得到的总体指示是“用 500 字写一篇关于 GPT-3 的学术论文,并在文中添加科学参考文献和引文”。然后,它针对标准学术论文格式中的引言、方法、结果和讨论部分分别给出了具体的提示。它为每个部分制作了最多三个版本,由人类合著者选择使用哪些版本。在期刊审阅该论文的同时,该论文的预印本可供查阅,GPT-3 被列为第一作者,创建提示的两位研究人员被列为合著者(GPT-3,Thunström 和 Steingrimsson,2022 年)。在人工智能与人类写作过程的描述中,我们再次看到了设定方向、提示人工智能、评估、管理和编辑输出的步骤。