摘要 人工智能 (AI) 的快速发展给利用 AI 在工作场所进行人机协作所需的教育和劳动力技能带来了重大挑战。随着人工智能继续重塑行业和就业市场,定义如何在终身学习中考虑人工智能素养的需求变得越来越重要 (Cetindamar 等人,2022 年;Laupichler 等人,2022 年;Romero 等人,2023 年)。与任何新技术一样,人工智能既是希望的主题,也是恐惧的主题,它今天所包含的内容带来了重大挑战 (Cugurullo & Acheampong,2023 年;Villani 等人,2018 年)。它也对我们自己的人性提出了深刻的问题。机器会超越设计它的人类的智慧吗?所谓的人工智能和我们的人类智能之间会是什么关系?如何规范人机协作,以服务于可持续发展目标 (SDG)?本文从计算思维、批判性思维和创造性能力的角度回顾了人工智能时代终身学习的挑战,强调了对组织管理和领导的影响。
摘要人工智能(AI)和机器学习(ML)正在彻底改变各个领域的人类活动,而医学和传染病并不能免除其快速和指数的增长。此外,可解释的AI和ML的领域已经获得了特别的相关性,并引起了人们的兴趣越来越大。传染病已经开始从可解释的AI/ML模型中受益。例如,在抗菌病毒预测和量子疫苗算法中,它们已被采用或提议更好地理解旨在改善2019年冠状病毒疾病诊断和管理的复杂模型。尽管有关解释性和可解释性之间二分法的某些问题仍然需要仔细关注,但对复杂的AI/ML模型如何得出其预测或建议的深入了解对于正确地面对本世纪传染病的日益严重的挑战变得越来越重要。
●Breiman(2001)首先提出了随机森林算法,但基于1995年的Tim Kan Ho●RF采用了两种集合技术:首先是训练样本,以种植基于不同培训训练数据的树木森林。第二个是特征空间的子采样。●如果我选择变量的子集(例如x1, x3, x7) to create a split in a node of a decision tree, and another subset (x2, x4, x5, x7) to create a different one, there will be events that get classified in a different way by the two nodes ● Often there is a dominant variables that is used to decide the split, offsetting the power of the subdominant ones.rf通过减少不同树的相关性来避免该问题
Calvino K. J. Chem。pharm。res。,2024,16(7):7-8毒理学,以发现趋势并预测新型化学物质的毒性。与常规
免疫系统中主要的组织相容性复合物(MHC)I类和II类分子的关键作用已得到很好的确定。本研究旨在开发一种新型的机器学习框架,用于通过MHC I类和II类分子预测抗原肽表现。通过整合大规模质谱数据和其他相关数据类型,我们基于深度学习提供了预测模型ONMIMHC。我们使用独立的测试集对其性能进行了严格的评估,ONMIMHC在MHC-I任务中的PR-AUC得分为0.854,Top20%-PPV为0.934,这表现优于现有方法。同样,在MHC-II预测的域中,我们的模型ONMIMHC的PR-AUC得分为0.606,TOP20%-PPV为0.690,表现出优于其他基线方法。这些结果证明了我们模型ONMIMHC在准确预测MHC-I和MHC-II分子之间的肽MHC结合后的优势。凭借其出色的准确性和预测能力,我们的模型不仅在一般的预测任务中出色,而且在预测新抗原针对特定癌症类型的新抗原方面也取得了显着的结果。特别是对于子宫菌群子宫内膜癌(UCEC),我们的模型成功地预测了新抗原,对普通人类等位基因具有很高的结合概率。这一发现对于开发针对UCEC的个性化肿瘤疫苗非常重要。
标准模型(比如 PAC 框架)并未捕捉到标记数据和未标记数据之间的区别,而这种区别催生了主动学习领域,在主动学习中,学习者可以要求特定点的标签,但每个标签都需要付费。这些查询点通常从未标记的数据集中选择,这种做法称为基于池的学习 [10]。目前也有一些关于人工创建查询点的研究,包括大量理论成果 [1, 2],但这种方法存在两个问题:首先,从实用角度来看,这样产生的查询可能非常不自然,因此人类很难进行分类 [3];其次,由于这些查询不是从底层数据分布中挑选出来的,因此它们在泛化方面的价值可能有限。在本文中,我们重点关注基于池的学习。
哺乳动物的视觉系统由平行的分层专业途径组成。不同的途径在使用更适合支持特定下游行为的表示形式方面是专门的。在特定的情况下,最清楚的例子是视觉皮层的腹侧(“ What what”)和背(“ Where”)途径的专业化。这两种途径分别支持与视觉识别和运动有关的行为。至今,深度神经网络主要用作腹侧识别途径的模型。但是,尚不清楚是否可以使用单个深ANN对两种途径进行建模。在这里,我们询问具有单个损失函数的单个模型是否可以捕获腹侧和背途径的特性。我们使用与其他哺乳动物一样的小鼠的数据探讨了这个问题,这些途径似乎支持识别和运动行为。我们表明,当我们使用自我监督的预测损失函数训练深层神经网络体系结构时,我们可以在拟合鼠标视觉皮层的其他模型中胜过其他模型。此外,我们可以对背侧和腹侧通路进行建模。这些结果表明,应用于平行途径体系结构的自我监督的预测学习方法可以解释哺乳动物视觉系统中看到的一些功能专业。
UAV图像采集和深度学习技术已被广泛用于水文监测中,以满足数据量需求不断提高和质量的增加。但是,手动参数培训需要反复试验成本(T&E),现有的自动培训适应简单的数据集和网络结构,这在非结构化环境中是低实用性的,例如干山谷环境(DTV)。因此,这项研究合并了转移学习(MTPI,最大转移电位指数法)和RL(MTSA强化学习,多汤普森采样算法)在数据集自动启动和网络中自动培训,以降低人类的经验和T&E。首先,为了最大程度地提高迭代速度并最大程度地减少数据集消耗,使用改进的MTPI方法得出了最佳的迭代条件(MTPI条件),这表明随后的迭代仅需要2.30%的数据集和6.31%的时间成本。然后,在MTPI条件(MTSA-MTPI)中提高了MTSA至自动提高数据集,结果显示准确性(人为误差)提高了16.0%,标准误差降低了20.9%(T&E成本)。最后,MTPI-MTSA用于四个自动训练的网络(例如FCN,SEG-NET,U-NET和SEG-RES-NET 50),并表明最佳的SEG-RES-NET 50获得了95.2%WPA(准确性)和90.9%的WIOU。本研究为复杂的植被信息收集提供了一种有效的自动培训方法,该方法提供了减少深度学习的手动干预的参考。
评估心脏骤停后昏迷患者的神经功能完整性仍是一个悬而未决的挑战。昏迷结果的预测主要依赖于专家对生理信号的视觉评分,这种方法容易产生主观性,并使相当多的患者处于预后不确定的“灰色地带”。对听觉刺激后脑电图反应的定量分析可以让我们了解昏迷时的神经功能以及患者苏醒的机会。然而,由于协议繁琐多样,标准化听觉刺激后的反应还远未在临床常规中使用。在这里,我们假设卷积神经网络可以帮助提取昏迷第一天对听觉刺激的脑电图反应的可解释模式,这些模式可以预测患者苏醒的机会和 3 个月后的存活率。我们使用卷积神经网络 (CNN) 对多中心和多方案患者队列中在标准化镇静和目标体温管理下昏迷第一天对听觉刺激的单次脑电图反应进行建模,并预测 3 个月时的结果。对于接受治疗性低温和常温的患者,使用 CNN 预测觉醒的阳性预测率分别为 0.83 ± 0.04 和 0.81 ± 0.06,预测结果的曲线下面积分别为 0.69 ± 0.05 和 0.70 ± 0.05。这些结果也持续存在于处于临床“灰色地带”的一部分患者中。网络预测结果的可信度基于可解释的特征:它与脑电图反应的神经同步性和复杂性密切相关,并受到独立临床评估的调节,例如脑电图反应性、背景爆发抑制或运动反应。我们的研究结果强调了可解释的深度学习算法与听觉刺激相结合在改善昏迷结果预测方面的巨大潜力。