在过去的 12 年中,桩基动态测试的技术方面发展迅速,尽管不如解释和建模方面发展得那么快。这反映了在桩基动态测试领域创造实践突破而非理论突破的更高挑战。据观察,理论发展源于创新的测试和测量方法。在这个关头,预计更高质量的测量将成为未来十年测试实践发展的关键方面之一。本文试图总结桩基动态测试的当前最新技术方面。在讨论了桩基动态测试的一些基本原理之后,回顾了以下内容:测试方法、加载设备和测量,包括它们的获取和解释。桩基动态测试可以定义为使用动态效应(即通过质量和加速度的干预在桩内、桩外或桩边界产生力或应力)对桩进行测试。桩与加速(或减速)质量之间最常见的动态相互作用发生在打桩过程中,这促使应力波理论应用于桩基。根据这种撞击过程中发生的现象的一维公式,向下传播的波(q)和向上传播的波(t)可以表示桩的行为(De St. Venant,1867 年;Isaac,1931 年)。这些波以速度 c 传播,由表达式 c = ,/FJp 给出,其中 E 和 p 是杨氏
在过去的 12 年中,桩基动态测试的技术方面发展迅速,尽管不如解释和建模方面发展得那么快。这反映了在桩基动态测试领域创造实践突破而非理论突破的更高挑战。据观察,理论发展源于创新的测试和测量方法。在这个关头,预计更高质量的测量将成为未来十年测试实践发展的关键方面之一。本文试图总结桩基动态测试的当前最新技术方面。在讨论了桩基动态测试的一些基本原理之后,回顾了以下内容:测试方法、加载设备和测量,包括它们的获取和解释。桩基动态测试可以定义为使用动态效应(即通过质量和加速度的干预在桩内、桩外或桩边界产生力或应力)对桩进行测试。桩与加速(或减速)质量之间最常见的动态相互作用发生在打桩过程中,这促使应力波理论应用于桩基。根据这种撞击过程中发生的现象的一维公式,向下传播的波(q)和向上传播的波(t)可以表示桩的行为(De St. Venant,1867 年;Isaac,1931 年)。这些波以速度 c 传播,由表达式 c = ,/FJp 给出,其中 E 和 p 是杨氏
在过去的 12 年中,桩基动态测试的技术方面发展迅速,尽管不如解释和建模方面发展得那么快。这反映了在桩基动态测试领域创造实践突破而非理论突破的更高挑战。据观察,理论发展源于创新的测试和测量方法。在这个关头,预计更高质量的测量将成为未来十年测试实践发展的关键方面之一。本文试图总结桩基动态测试的当前最新技术方面。在讨论了桩基动态测试的一些基本原理之后,回顾了以下内容:测试方法、加载设备和测量,包括它们的获取和解释。桩基动态测试可以定义为使用动态效应(即通过质量和加速度的干预在桩内、桩外或桩边界产生力或应力)对桩进行测试。桩与加速(或减速)质量之间最常见的动态相互作用发生在打桩过程中,这促使应力波理论应用于桩基。根据这种撞击过程中发生的现象的一维公式,向下传播的波(q)和向上传播的波(t)可以表示桩的行为(De St. Venant,1867 年;Isaac,1931 年)。这些波以速度 c 传播,由表达式 c = ,/FJp 给出,其中 E 和 p 是杨氏
在过去的 12 年中,桩基动态测试的技术方面发展迅速,尽管不如解释和建模方面发展得那么快。这反映了在桩基动态测试领域创造实践突破而非理论突破的更高挑战。据观察,理论发展源于创新的测试和测量方法。在这个关头,预计更高质量的测量将成为未来十年测试实践发展的关键方面之一。本文试图总结桩基动态测试的当前最新技术方面。在讨论了桩基动态测试的一些基本原理之后,回顾了以下内容:测试方法、加载设备和测量,包括它们的获取和解释。桩基动态测试可以定义为使用动态效应(即通过质量和加速度的干预在桩内、桩外或桩边界产生力或应力)对桩进行测试。桩与加速(或减速)质量之间最常见的动态相互作用发生在打桩过程中,这促使应力波理论应用于桩基。根据这种撞击过程中发生的现象的一维公式,向下传播的波(q)和向上传播的波(t)可以表示桩的行为(De St. Venant,1867 年;Isaac,1931 年)。这些波以速度 c 传播,由表达式 c = ,/FJp 给出,其中 E 和 p 是杨氏
gebeshuber@iap.tuwien.ac.at(2)奥地利维也纳奥地利科学学院技术评估研究所,该邀请的讲座探讨了生物启发和生物模拟纳米材料,与生物启发或生物含量的纳米技术和Biomimimimimicechnotechnolology and Biimimimatimetic nanotechnolology and Biimimimicethology and Biimimimatimentials差异化。 在澄清了这些术语后,提出了生物启发和仿生纳米材料的基础知识。 随后,根据制造方法而不是基于材料的功能,给出了生物启发和仿生纳米材料的合成方法的系统分类。 这使其与安全方面有更连贯的相关性,在许多情况下尚待定义。 由于种类繁多,根据材料特性或材料组成的分类不可行。 除了化学特性外,诸如大小,结构和表面质量之类的物理参数在分类中起着重要作用。 总而言之,可以说,生物启发和仿生的纳米材料代表重要的基本材料作为研究,开发和行业中所谓的功能高级材料,但前提是材料开发伴随着相应的安全性和面向可持续性的技术评估。gebeshuber@iap.tuwien.ac.at(2)奥地利维也纳奥地利科学学院技术评估研究所,该邀请的讲座探讨了生物启发和生物模拟纳米材料,与生物启发或生物含量的纳米技术和Biomimimimimicechnotechnolology and Biimimimatimetic nanotechnolology and Biimimimicethology and Biimimimatimentials差异化。在澄清了这些术语后,提出了生物启发和仿生纳米材料的基础知识。随后,根据制造方法而不是基于材料的功能,给出了生物启发和仿生纳米材料的合成方法的系统分类。这使其与安全方面有更连贯的相关性,在许多情况下尚待定义。由于种类繁多,根据材料特性或材料组成的分类不可行。除了化学特性外,诸如大小,结构和表面质量之类的物理参数在分类中起着重要作用。总而言之,可以说,生物启发和仿生的纳米材料代表重要的基本材料作为研究,开发和行业中所谓的功能高级材料,但前提是材料开发伴随着相应的安全性和面向可持续性的技术评估。
细胞的边界是由生物膜形成的,即定义细胞内部和外部的屏障。这些障碍可以防止细胞内部产生的分子泄漏出来,并从扩散中散开分子;然而,它们还包含允许细胞采用特定分子并去除不需要的传输系统。此类运输系统授予膜选择性渗透性的重要特性。膜是动态结构,其中蛋白质漂浮在脂质的海中。膜的脂质成分形成了通透性的屏障,蛋白质成分充当泵和通道的传输系统,可将选定的分子进入和流出细胞。生物膜形成不对称结构,并且像具有流动性一样是流体,即具有各种细胞分子的易位酶。生物膜的不对称性可以部分归因于膜内蛋白质的不规则分布。生物膜的脂质双层由外部小叶和内部小叶组成,它们分布在两个表面之间,以在外表面和内表面之间形成不对称性。这个不对称的组织对于细胞功能(例如细胞信号传导)很重要。生物膜的不对称性反映了膜的两个传单的不同功能。如磷脂双层的流体膜模型所示,膜的外部和内部小叶在其组成中是不对称的。膜流动性是指