了解人类如何评估信誉是假新闻时代的一个重要科学问题。消息信誉是信誉评估的关键方面之一。理解消息可信度的最直接方法之一是使用进行信誉评估的人的大脑活动的测量。尽管如此,以前从未使用过这种方法对消息信誉进行调查。本文报告了一个实验的结果,在此期间,我们使用脑电图在消息信誉评估过程中测量了大脑活动。实验允许识别参与者进行正面或负面消息可信度评估时活跃的大脑区域。基于实验数据,我们使用EEG脑活动测量值对人类消息可信度评估进行了建模和预测,而F1得分超过0.7。
摘要 为了检验 DNA 复制与端粒长度之间已建立的联系,我们测试了端粒起源的激发是否会导致端粒延长。我们发现阻断蛋白磷酸酶 1 (PP1) 结合的 RIF1 突变体激活了端粒起源,但没有延长端粒。在第二种方法中,我们发现 D N-Dbf4 和 Cdc7 的过度表达增加了 DDK 活性并激活了端粒起源,但端粒长度没有变化。我们测试了第三种激活起源的机制,即使用 sld3-A mcm5-bob1 突变体来解除对前复制复合体的调控,并且再次发现端粒长度没有变化。最后,我们测试了导致端粒延长的 RIF1 突变是否会影响起源激发。我们发现 rif1- D 1322 和 rif1 HOOK 均不影响端粒起源的激发。我们得出结论,端粒起源激发不会导致端粒延长,并且 Rif1 在调节起源激发中的作用与其在调节端粒长度中的作用是可分开的。
摘要 - 使用2次生成高温超导体(2G HTS)磁带的电阻型超导故障电流限制器(R-SFCL)的设计。一方面,当淬火发生在整个导体上(即限制机制)时,它应该承受最高的电场以降低其长度并使其具有成本效益。另一方面,它还必须应对热点制度。临界电流范围内的故障电流可以导致沿导体长度的局部耗散,从而在显示最低值值的部分上。来自低正常区域传播速度的2G HTS磁带的电流几乎没有限制会导致这些区域的温度升高,从而极大地威胁了它们的完整性。总而言之,导体体系结构适应了高电场,并获得了热点制度中最高温度的无损值。但是,导致这种最后提及的制度的𝑰𝑰变化取决于沿胶带的位置。本文旨在鉴定可变导体长度对𝑰𝑰变化的影响,并因此对热点制度的影响。我们首先研究长度对𝑰𝑰变化的影响。当导体长度增加时,最小临界电流往往会减小。这种行为可以通过Weibull分布来建模,假设最小临界电流与无限导体长度不同。为了评估对热点制度的这种影响,我们使用2G HTS导体的确定性1D建模来开发一种概率方法,该模型沿其长度考虑了𝑰𝑰𝑰𝒄不均匀性,以模拟R-SFCL行为。看来,导体越长,热点状态中的最高温度就越高。此外,两个相对长度相对长度的测量值在热点状态下呈现不同的最高温度的事实导致了一种方法,可以设计出所需长度的大规模制造导体,可稳健,以在任何𝑰𝒄的变化中生存在热点方案中。
多聚腺苷酸化是一个动态过程,在细胞生理学中非常重要。Oxford Nanopore Technologies 的直接 RNA 测序提供了一种对全长 RNA 分子进行测序以及对转录组和表观转录组进行分析的策略。目前有几种可用于 poly(A) 尾长估计的工具,包括 tailfindr 和 nanopolish 等成熟工具,以及两种较新的深度学习模型:Dorado 和 BoostNano。然而,这些工具的准确性与金标准数据集的基准测试有限。在本文中,我们使用合成 RNA 标准(Sequins)评估了四种 poly(A) 估计工具,这些标准具有已知的 poly(A) 尾长,并提供了一种衡量 poly(A) 尾长估计准确性的有效方法。所有四种工具生成的平均尾长估计值都在正确值的 12% 以内。总体而言,由于 Dorado 运行时间相对较快、变异系数低并且易于使用且可与碱基调用集成,因此被推荐作为首选方法。
金属合金的疲劳裂纹扩展速率 (FCGR) 曲线通常分为三个区域。区域 II 通常被称为 Paris 区域,通常用单指数的幂律关系建模。区域 I 和 III 分别位于 FCGR 曲线的起点和终点,通常用渐近关系建模。在本文中,我们假设疲劳裂纹扩展在所有裂纹长度和所有应力强度因子范围 (ΔK) 下都受幂律行为支配。为了适应区域 I - III 中 FCGR 斜率的变化,在 Paris 方程中引入了数学枢轴点。存在枢轴点的幂律行为使得能够直接拟合裂纹长度与循环数 (a-N) 曲线,以获得 FCGR 与 ΔK 的关系。这种新方法适用于小而长的裂纹扩展曲线,并能得到精确的多线性 FCGR 曲线,适合重建测得的 a-N 曲线。该方法随后应用于 i) 不同的合金,以显示 FCGR 曲线因合金成分和热处理变化而产生的局部变化,ii) 自然增加微观结构小裂纹的 Δ K 测试,以获得准确的小裂纹 FCGR 数据。与准确的长裂纹数据的比较表明,小裂纹速度更快,但从区域 I 到区域 II 的过渡发生在特定的疲劳裂纹扩展速率下,从而导致明显的偏移
本文件“按重量、体积、数量或尺寸(长度、面积或厚度)标记消费品包装指南”基于美国国家标准与技术研究所手册 130“法定计量和燃料质量领域的统一法律和法规”中的统一包装和标签法规 (UPLR)。它概述了按重量、体积、数量或尺寸销售的消费品和商品的标签要求。本指南不能替代 UPLR。读者应参考 UPLR 以确保满足所有要求。本指南不适用于葡萄酒、麦芽饮料和蒸馏酒、受美国农业部标签要求约束的某些肉类和家禽产品包装以及贴有出口标签的包装。
TIPS-VF:具有序列,长度和位置意识的可变长度DNA片段的增强向量表示Marvin I.de los santos logia.co,马尼拉大都会,菲律宾Midelossantos1215@gmail.com摘要,在机器学习过程中准确编码和表示遗传序列的能力对于生物技术的进步至关重要,这对于生物技术的进步至关重要,特别是基因工程和合成生物学。传统的序列编码方法在处理序列变异性,保持阅读框架完整性并保留生物学相关的特征中面临着显着的限制。这项初步研究介绍了TIPS-VF(可变长度片段的翻译器互动预种植者),这是一个简单有效的编码框架,旨在解决代表机器学习遗传序列的一些关键挑战。结果表明,TIPS-VF启用了可变的长度序列表示,该表示可以保留生物学环境,同时确保编码与密码子边界的对齐,从而特别适合模块化遗传结构。TIPS-VF在截断和碎片分析,序列同源性检测,域评估和剪接连接识别方面表现出卓越的性能。与需要固定长度输入的常规方法不同,TIPS-VF动态适应序列长度变化,保留基本特征,例如域相似性和序列基序。此外,TIPS-VF通过将序列嵌入与三个可能的开放式阅读框架统一,改善了开放的阅读框架识别并增强了向量零件和质粒元素的识别。总的来说,TIPS-VF提供了一个强大的,生物学上有意义的编码框架,通过结合序列,长度和位置意识来克服传统序列表示的约束。TIPS-VF编码基础架构可在https://tips.logiacommunications.com上找到。利益冲突:作者宣布没有利益冲突资金资金信息:无
方法 我们发起了一项随机、安慰剂对照的 1-2 期试验,以评估 131 名健康成人中 rSARS-CoV-2 疫苗(剂量为 5 g 和 25 g,有或没有 Mattrix-M1 佐剂,观察员不知道试验组分配情况)的安全性和免疫原性。在第 1 阶段,疫苗接种包括两次肌肉注射,间隔 21 天。主要结果是反应原性:根据食品和药物管理局的毒性评分,实验室值(血清化学和血液学)以评估安全性:和 IgG 抗刺突蛋白反应(以酶联免疫吸附测定 (ELISA) 单位为单位)。次要结果包括未经请求的不良事件、野生型病毒中和(微量中和试验)和 T 细胞反应(细胞因子染色)。将 IgG 和微量中和试验结果与来自 Covid-19 患者的 32 个(IgG)和 29 个(中和)恢复期血清样本进行了比较,其中大多数患者有症状。我们在第 35 天进行了初步分析。
背景:最近,急诊科(EDS)的拥挤已成为影响全球公共医疗保健的公认关键因素,这是由于医疗服务的供应/需求不断增加以及住院单位和ED中可用的医院病床的匮乏所致。已发现ED(ED-LOS)的住宿时间是ED瓶颈的重要指标。通过测量ED-LOS来量化患者在ED中花费的时间,而ED-LOS可以通过不具备的护理过程影响,并导致死亡率和健康支出增加。因此,重要的是要通过预测工具实现早期改进来了解ED-LOS的主要因素。方法:这项工作的目的是使用一组有限的功能,影响ED-LOS,既可以与患者特征和ED工作流”进行预测。选择了不同的因素(年龄,性别,分类水平,入学时间,到达模式)并进行了分析。然后,将机器学习(ML)算法用于预见的ED-LOS。考虑到从2014年至2019年期间的“ san Giovanni dio dio d'ruggi d'Aragona”医院(意大利萨勒诺)的“ San Giovanni dio dio e ruggi d'Aragona”医院获得的患者数据库的数据集。结果:在考虑的年份中,评估了496,172次入院,其中143,641人(28.9%)显示ED-LOS延长。考虑到完整的数据(女性为48.1%,男性为51.9%),51.7%的ED-LOS患者为男性,女性为47.3%。关于年龄组,受延长ED-LO影响最大的患者超过64岁。随机森林算法的评估指标被证明是最好的。实际上,在预测ED-LOS时,它达到了最高准确性(74.8%),精度(72.8%)和召回(74.8%)。结论:不同的变量,指患者的个人和临床属性以及ED过程,对ED-LOS的价值有直接影响。建议的预测模型具有令人鼓舞的结果;因此,它可以应用于预测和管理ED-LOS,防止ED的拥挤和优化有效性和效率。
• Slot 1: 1 x8 Gen5 or 1 x8/1 x16 Gen4 Full height, Half length or 1 x16 Gen4 Full height, Full length • Slot 2: 1 x8/1 x16 Gen5 or 1 x8 Gen4 Full height, Half length or 1 x16 Gen5 Full height, Full length • Slot 3: 1 x16 Gen4 Low profile, Half length • Slot 4: 1 x8 Gen4 Full height, Half length • Slot 5: 1 x8/1 x16 Gen4 Full height, Half length or 1 x16 Gen4 Full height, Full length • Slot 6: 1 x16 Gen4 Low profile, Half length • Slot 7: 1 x8/1 x16 Gen5 or 1 x8 Gen4 Full height, Half length or 1 x16 Gen5 Full height, Full length • Slot 7 SNAPI: 1 x16 Gen5 Full height, Half length • Slot 8: 1 x8 Gen5 or 1 x8 Gen4 Full height,半长