锂(Li)次要来源的供应(例如电池)将在减轻初级生产(盐水和矿物质)的需求方面发挥关键作用。要实现欧盟施加的电动汽车(EV)LIBINT电池(EV)LIBS LIBS(LIBS)的雄心勃勃的回收目标,必须以加速的速度开发创新的回收过程。已经开发了直接锂提取(DLE)方法来从盐水中产生LI。在此,我们评估了各种DLE技术的应用,从回收电动汽车流中提取LI。已经映射了几种DLE方法的技术方面和合适的初始溶质浓度范围,即绘制了溶剂提取,离子交换树脂,吸附剂,膜和电化学离子泵送。之后,通过估计LI回收率和损失,通过干燥和湿碎碎屑的不同组合选择了EV LIB回收过程的最佳预处理途径,然后是阳极分离的泡沫浮选。焦化整个细胞/模块,然后发现干燥和浮选是最理想的过程,可以最大程度地减少在预处理期间LI损失。此外,为下游水膜铝过程的浓度,组成和流量的估计估计是为了识别可以使用DLE的含Li的流,并且适当的技术已经被高照明。DLE的掺入有可能在回收过程中最大程度地减少LI损失。然而,可能需要各种DLE方法以不同的步骤恢复LI,并具有纳米滤过和反渗透,选择性离子 - 交换树脂和溶剂提取是最有希望的选择。
锂离子电池(LIBS)在我们的现代世界中已经变得无处不在,自1991年通过Sony Inc.发现以来,从智能手机到电动汽车,更多的一切都提供了更多的动力。市场对Libs的需求迅速增加,原材料价格的不可预测的上升为将来的大规模生产带来了不可避免的障碍。根据报道,在过去的十年中,Lith IUM价格几乎增加了两倍。未来的制造汇总可能会遇到挑战,这也是由于基本要素的全球稀缺(Li,Co和Ni)[1-4]。尽管这些电池提供了令人印象深刻的能量密度,低自减电率,轻巧和效率,但它们的广泛使用引起了人们对环境心理影响和资源耗竭的担忧[5,6]。在这次迷你审查中,我们探讨了回收锂电池以减轻问题和促进可持续未来的重要性。Hydorementallurgy和Py Rometallurgy是用于回收花费的两种主要方法。我们在更多的尾巴中介绍了提到的回收用过的锂电池的方法之一。
通过热液过程和硝化化合物合成的类似饼干的co-vn@c在锂离子电池(LIBS)中具有出色的电化学特性,并且在氧气进化反应(OER)中具有阳极材料和催化剂。具有丰富暴露活性位点的金属CO纳米颗粒在原位均匀地隔离,以便它们强烈地粘附在VN底物上,从而导致加速电荷转移并增强稳定性。复合材料的碳壳充当缓冲层,可减轻体积的膨胀,电池的稳定容量为335.5 mAh g -1后500循环后,以0.5 a g -1循环。以不同的速率进行测试后,电流密度恢复为0.1 a g -1,Co-Vn@C电极的容量返回到588.0 mAh g -1。此外,Co-Vn@C在氧气演化反应中具有出色的电化学催化活性。这项工作阐明了长期的稳定性和高速率的电极材料,用于将来的LIBS开发,该策略为电化学催化的高性能电极材料设计提供了见解。
fe 2 Tio 5(FTO)由于其高理论能力和环境友谊ness [1],引起了锂离子电池(LIB)的广泛关注。然而,大量衰落和下循环性能是过渡金属氧化物的常见问题[2,3]。为了实现更好的电化学性能,研究人员致力于将过渡金属氧化物与其他可以减轻体积变化的材料相结合,即,碳[4]。在这种情况下,碳涂料可以增强循环稳定性,因为它可以抑制FTO纳米颗粒(FTO NP)的聚集[5]。因此,包含FTO和石墨烯的混合结构的制造为开发LIBS中高性能阳极材料的发展提供了有希望的策略。在这项工作中,我们报告了一种两步溶剂热方法,用于合成用还原石墨烯(RGO)装饰的混合FTO NP。与原始的FTO NP相比,当在LIBS中用作阳极材料时,所得的FTO NPS/RGO复合材料表现出优异的ELEC TROCHEMICAL ESTRATIOS。每种表达电化学的增强可以归因于RGO的引入,RGO
摘要:锂离子电池(LIB)在电动汽车(EV)中的重要作用强调了它们在能量密度,轻巧和环境可持续性方面的优势。尽管存在障碍,例如成本,安全问题和回收挑战,但在电动汽车的普及方面至关重要。电动汽车中LIB的准确预测和管理至关重要,并且已经探索了基于机器学习的方法,以估算诸如电荷状态(SOC),健康状况(SOH)和权力状态(SOP)之类的参数。已采用各种机器学习技术,包括支持向量机,决策树和深度学习,用于预测LIB国家。本研究提出了一种比较分析的方法,重点是经典和深度学习方法,并讨论了LSTM(长期短期记忆)和BI-LSTM(双向长期短期记忆)方法的增强。评估指标(例如MSE,MAE,RMSE和R平方)用于评估所提出的方法的性能。该研究旨在通过预测LIB的性能来促进电动汽车行业的技术进步。概述了其余研究的结构,涵盖了材料和方法,LIB数据准备,分析,机器学习模型的建议,评估和结论性评论,并提出了未来研究的建议。
废旧锂离子电池 (LIB) 因其在各种能源相关应用中的广泛使用而变得越来越普遍。这些电池含有钴 (Co) 和锂 (Li) 等有价值的金属,这些金属需求量很大,但长期供应有限。为了回收这些有价值的金属并避免环境污染,人们广泛探索了使用不同方法回收废旧 LIB,包括湿法冶金、火法冶金、直接回收和生物湿法冶金 (生物浸出)。每种方法在成本效益和从废旧 LIB 中回收钴和锂方面都有优点和缺点。因此,为了开发出新颖实用的有效金属提取策略,有必要对最近关于从废旧 LIB 中提取钴和锂的不同回收方法的性能研究进行全面而批判性的分析。具体而言,本综述重点介绍了现有回收方法和新兴回收技术在可持续性、效率、成本效益和环境友好性方面在从废旧 LIB 中回收钴和锂方面的应用的最新进展。本评论还指出,LIB 设计的标准化、SLIB 拆卸的自动化以及回收过程中人工智能/机器学习的参与是从 SLIB 中可持续回收有价值金属和最大限度地减少 SLIB 污染的一些最佳实践。
医疗保健,汽车和航空等领域。其中,灵活且耐磨的电子设备表现出越来越多的兴趣,例如可植入的医疗设备,[1]可穿戴健康监测系统,[1,2]柔性显示器,[3]和智能服装。[4]使用刚性且相对不安全的锂离子电池(LIB)作为电源的常规设备,无法满足生物友善和灵活特征的未来需求。此外,柔性液体的瓶颈,例如高成本,安全问题和复杂的制造要求限制了灵活性液体的商业化。作为有希望的替代品,锌离子电池(Azibs)引起了人们的关注。由于锌金属的高容量容量(5855 mAh cm-3),它们被视为柔性设备的竞争候选者及其易于制造的工艺。与此同时,对于Azibs的$ 25/kWh [5],与LIBS相比,$ 135/kWh [6,7],对在不同规模的设备尺度上应用Azibs是有益的。锌离子电池(Azibs)通常会遭受不利的水引起的副反应,从而导致锌树突形成,阴极构造的溶解以及在阴极上的副产物形成,从而导致快速容量淡出。由于水电解(稳定
使用硫固体电解质(SES)的全稳态电池(ASSB)是有吸引力的候选物,因为与使用有机溶剂相比,使用液体型锂离子电池(LIBS)比液体型锂离子电池(LIBS)更长。sulfer ses,即使在干燥室等环境中,也会在暴露于水分时会降低其离子电导率并产生有毒的氢硫。然而,到目前为止,尚未完全阐明水分暴露在ASSB细胞性能上的影响。旨在填补这一知识的差距,本文描述了水分对ASSB阳性电极的耐用性的影响,并在这项研究中以露室模拟的空气暴露或暴露于干室模拟的空气中,在这项研究中为-20°C。在细胞耐用性评估后,在阳性电极上进行了二级离子质谱(TOF-SIMS)测量时间,并使用裸露的SE在细胞中观察到了特征降解模式。
使用硫固体电解质(SES)的全稳态电池(ASSB)是有吸引力的候选物,因为与使用有机溶剂相比,使用液体型锂离子电池(LIBS)比液体型锂离子电池(LIBS)更长。sulfer ses,即使在干燥室等环境中,也会在暴露于水分时会降低其离子电导率并产生有毒的氢硫。然而,到目前为止,尚未完全阐明水分暴露在ASSB细胞性能上的影响。旨在填补这一知识的差距,本文描述了水分对ASSB阳性电极的耐用性的影响,并在这项研究中以露室模拟的空气暴露或暴露于干室模拟的空气中,在这项研究中为-20°C。在细胞耐用性评估后,在阳性电极上进行了二级离子质谱(TOF-SIMS)测量时间,并使用裸露的SE在细胞中观察到了特征降解模式。
为克服全球能源危机,利用太阳能、风能、潮汐能等绿色可再生能源势在必行,因此,高效的储能装置在实现可再生能源的储存和释放中起着至关重要的作用。尽管可充电锂离子电池(LIB)已经取得了广泛的成功,1,2但是人们对安全问题的日益担忧、高成本和有限的锂资源严重限制了它们的应用。3与昂贵且易燃的 LIB 相比,水系可充电锌离子电池(ZIB)由于锌阳极的天然丰富性和高操作安全性而成为一种有吸引力的替代品。4–6此外,水系可充电锌离子电池理论上可以实现更高的比容量和能量密度,因为 Zn 2+ 离子作为多价电荷载体参与