MAPT cg01934064 17 44064242 船体搁板 -0.14 0.024 MAPT cg15323584 17 44022846 5'UTR 搁板 0.11 0.009 MAPT cg17569492 17 44026659 5'UTR 岛 0.09 0.019 MAPT cg12727978 17 44075500 船体露天海域 0.08 0.009 TREM2 cg02828883 6 41131823 TSS1500 露天海域 0.08 0.005 TIA1 cg14434028 2 70452453 船体露天海域 0.08 0.036 TIA1 cg13119546 2 70444039 身体 opensea 0.05 0.041 RUNX2 cg16181497 6 45409732 身体 opensea -0.07 0.042 RUNX2 cg12755953 6 45430813 身体 opensea 0.06 0.039 RUNX2 cg04110902 6 45500999 身体 opensea 0.05 0.038 GRN cg06800040 17 42427647 身体 shelf 0.07 0.022 FTLD1m 按亚型分类:TDP Type A C9orf72 vs CTRL MAPT cg15323584 17 44022846 5'UTR shelf 0.17 0.002 MAPT cg12727978 17 44075500 船体 开海 0.15 0.001 MAPT cg17569492 17 44026659 5'UTR 岛 0.1 0.032 MAPT cg19276540 17 44060353 船体 岛 0.08 0.035 RUNX2 cg12041069 6 45341222 船体 搁板 0.15 0.04 RUNX2 cg17636752 6 45391973 船体 岸 0.09 0.036 RUNX2 cg12755953 6 45430813 船体 开海 0.08 0.026 TIA1 cg14434028 2 70452453 身体 开放海 0.13 0.011 TIA1 cg13119546 2 70444039 身体 开放海 0.06 0.047 TIA1 cg15836561 2 70442511 ExonBnd 开放海 0.06 0.028 TBK1 cg23175599 12 64848891 5'UTR 架 0.1 0.026 TREM2 cg02828883 6 41131823 TSS1500 开放海 0.09 0.017 CCNF cg26647200 16 2482775 身体 架 0.09 0.022 GRN cg06800040 17 42427647 车身搁板 0.08 0.031 GRN cg12837296 17 42426483 5'UTR 开海 0.07 0.033 GRN cg23570245 17 42426011 5'UTR 开海 0.06 0.048 GRN cg08491241 17 42421960 TSS1500 开海 0.06 0.05 SQSTM1 cg05578452 5 179255653 车身开海 0.07 0.005 SQSTM1 cg09046399 5 179264098 3'UTR 开海 0.06 0.025 FTLD1m 亚型:TDP C 型 vs CTRL MAPT cg01934064 17 44064242 船体架 -0.16 0.016 MAPT cg17569492 17 44026659 5'UTR 岛 0.08 0.045 MAPT cg26979107 17 44061355 船体岸 0.06 0.016 MAPT cg22635938 17 44039549 5'UTR 公海 -0.06 0.012 MAPT cg01582587 17 44036817 5'UTR 公海 0.05 0.022 TBK1 cg09999583 12 64878162 船体公海-0.1 0.029 TREM2 cg02828883 6 41131823 TSS1500 公海 0.08 0.009
大豆是全球重要的工业、食品和经济作物。尽管大豆在现在和未来的经济中具有重要意义,但其生产却受到破坏性仓储害虫豆象 ( Callosobru- chus chinensis ) 的严重阻碍,造成了相当大的产量损失。因此,鉴定与大豆抗豆象相关的基因组区域和候选基因至关重要,因为它有助于育种者开发具有更高抗性和品质的大豆新品种。在本研究中,使用全基因组关联研究的 mrMLM 模型的 6 种多位点方法来剖析 100 种不同大豆基因型在 4 个性状上的豆象抗性的遗传结构:成年豆象羽化百分比 (PBE)、体重减轻百分比 (PWL)、中位发育期 (MDP) 和 Dobie 易感指数 (DSI),使用 14,469 个单核苷酸多态性 (SNP) 标记进行基因分型。使用最佳线性无偏预测因子 (BLUP),通过 mrMLM 模型鉴定了 13 个数量性状核苷酸 (QTN),其中 rs16_14976250 与 1 个以上的抗豆象性状相关。因此,已鉴定的与抗性状相关的 QTN 可用于标记辅助育种,以准确快速地筛选抗豆象的大豆基因型。此外,对 Phytozome 大豆参考基因组进行的基因搜索鉴定了 27 个潜在候选基因,这些基因位于最可靠 QTN 上游和下游 478.45 kb 的窗口内。这些候选基因表现出与各种大豆抗性机制相关的分子和生物学功能,因此可以纳入农民偏爱的易受豆象侵害的大豆品种中。
摘要:检测从尖端 - 样品连接散射的电磁辐射已使衍射限制并开始了Polariton纳米影像的繁荣场。但是,大多数技术仅解决散射辐射的振幅和相对相。在这里,我们利用了对超短散射脉冲的场分辨检测来绘制空间和时间上表面极化子的动力学。等离子体极化子是研究的理想模型系统,证明了如何通过直接的数学方程式和归一化方法在时间域中可视化和建模传播模式。这种新颖的方法可以直接评估极化子的组和相速度以及阻尼。此外,它与泵 - 探头方案的结合特别强大,可在光激发时追踪极化子繁殖的亚周期变化。我们的方法很容易适用于其他量子材料,提供了一种多功能工具来研究极性子的超临时空间时空动力学。关键字:Terahertz表面等离子体极化子,近场光学显微镜,S-SNOM,野外分辨,石墨烯,时间分辨,超时地图,相位速度,组速度,群体速度,全光照控制
近几十年来,全基因组关联研究 (GWAS) 通过识别人类群体中存在的因果变异,增进了我们对疾病和复杂性状遗传基础的理解 ( Buniello 等人,2019 年;Visscher 等人,2017 年;Wang 等人,2022 年;)。为了揭示潜在机制并发现潜在的治疗靶点,人们越来越需要解释遗传变异的功能相关性 ( Cano-Gamez 和 Trynka,2020 年)。随着高通量测序技术的快速发展,越来越多的研究采用了综合方法,将遗传信息与各种分子表型相结合,例如基因表达、剪接、蛋白质丰度和染色质修饰/可及性。这些综合策略为分子数量性状基因座 (molQTL) 作图( Aguet 等,2023)铺平了道路,这是一种强大的统计框架,可以识别与分子表型数量变异相关的基因座,从而深入了解遗传变异的功能后果。
将变送器主体牢固地安装到机器表面非常重要。请参阅第 6 节关于传感器放置的内容。两种基本的变送器安装样式需要不同的机器准备:NPT(国家管螺纹)和机器螺纹(UNF 和公制)。带有 NPT 型安装螺柱的变送器通过螺纹啮合固定,变送器的底座不接触机器表面。带有机器螺纹螺柱的变送器必须接触机器表面。变送器的底座必须呈方形并直接接触。这需要用 1 1/2 英寸沉头孔(表面处理工具)准备机器表面。此工具可与配备磁性底座的便携式钻头一起使用,但必须小心,使攻丝和螺纹孔垂直于加工表面。变送器必须与其底座表面完全接触。请联系 Metrix 获取更详细的沉头孔说明。
Arbelaez,J。D.,Dwiyanti,M。S.,Tandayu,E.,Llantada,K.,Jarana,A.1K-RICA(1K-RICE自定义扩增子)一种基于大米中遗传学和育种应用的新型基因分型SNP分析。米,12,1 - 15。Cameron,J。N.,Han,Y.,Wang,L。,&Beavis,W。D.(2017)。 特质渗入项目的系统设计。 理论和应用遗传学,130,1993 - 2004。https://doi.org/10.1007/S00122-017-2938-9 Chen,G.K.,G.K.,Marjoram,P。,&Wall,J。D.(2009)。 DNA序列数据的快速而灵活的模拟。 基因组研究,19,136 - 142。https:// doi。 org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。 回到未来:将MAS作为现代植物繁殖的工具。 理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。 提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。 理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A. 重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。Cameron,J。N.,Han,Y.,Wang,L。,&Beavis,W。D.(2017)。特质渗入项目的系统设计。理论和应用遗传学,130,1993 - 2004。https://doi.org/10.1007/S00122-017-2938-9 Chen,G.K.,G.K.,Marjoram,P。,&Wall,J。D.(2009)。DNA序列数据的快速而灵活的模拟。 基因组研究,19,136 - 142。https:// doi。 org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。 回到未来:将MAS作为现代植物繁殖的工具。 理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。 提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。 理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A. 重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。DNA序列数据的快速而灵活的模拟。基因组研究,19,136 - 142。https:// doi。org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。回到未来:将MAS作为现代植物繁殖的工具。理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A.重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。植物生产科学,20,337 - 352。https://doi.org/10。1080/1343943X.2017.1391705 Collard,B.C. Y.,Gregorio,G。B.,G。B.,Thomson,M。J.,M。J.,R.转移水稻育种:在国际水稻研究所(IRRI)上重新设计灌溉育种管道。作物育种,遗传学和基因组学,1,E190008。https://doi.org/10.20900/cbgg20190008 Dar,M.H.,Zaidi,N。W.,Waza,S.A.,Verulkar,S.B.,S.B.,Ahmed,T.,Singh,P.K. K.,Kathiresan,R.M.,Singh,B.N.,Singh,U.S。,&Ismail,A.M。(2018)。在有利条件下没有收益罚款,为成功采用洪水大米铺平了道路。科学报告,8,9245。B.(2011)。ridge回归和其他用于基因组选择的内核,r tagkage rrblup。植物基因组,4,250 - 255。https://doi.org/10.3835/plantgenome2011.08.0024
Originals Received: 08/23/2024 ACCEPTANCE FOR PUBLICATION: 09/13/2024 DAYSE MARY DE AGUIAR BARDER GRADUATE INSTITUTION: NORTH EDUCATIONAL UNION (UNINORTE) ADDRESS: RIO BRANCO, BRAZIL, E-mail: daysevideira@gmail.com Bruna Eduarda Cardos Curitiba, Paraná, Brazil E-mail: cicutobru@gmail.com Letícia Nogueira Ventura Andrade Graduate in Medicine Institution: Minas Gerais Medical Sciences College (FCMMG) Address: Belo Horizonte, Minas Gerais, Brazil E-mail: leticiandrade08@gmail.com Maria Clara Vaz Oliveira Graduate in Medicine Institution (FCMMG) Address: Belo Horizonte, Brazil E-mail: mariaclaravazoliveira01@gmail.com Livia Palumbo Almeida Queiroz Esteves医学机构研究生:Minas Gerais医学科学学院(FCMMG)地址:Belo Horizonte,Minas Gerais,Minas Gerais,Brazil,Brazil E-Mail:Liviapalumbo2003@gmail.comOriginals Received: 08/23/2024 ACCEPTANCE FOR PUBLICATION: 09/13/2024 DAYSE MARY DE AGUIAR BARDER GRADUATE INSTITUTION: NORTH EDUCATIONAL UNION (UNINORTE) ADDRESS: RIO BRANCO, BRAZIL, E-mail: daysevideira@gmail.com Bruna Eduarda Cardos Curitiba, Paraná, Brazil E-mail: cicutobru@gmail.com Letícia Nogueira Ventura Andrade Graduate in Medicine Institution: Minas Gerais Medical Sciences College (FCMMG) Address: Belo Horizonte, Minas Gerais, Brazil E-mail: leticiandrade08@gmail.com Maria Clara Vaz Oliveira Graduate in Medicine Institution (FCMMG) Address: Belo Horizonte, Brazil E-mail: mariaclaravazoliveira01@gmail.com Livia Palumbo Almeida Queiroz Esteves医学机构研究生:Minas Gerais医学科学学院(FCMMG)地址:Belo Horizonte,Minas Gerais,Minas Gerais,Brazil,Brazil E-Mail:Liviapalumbo2003@gmail.com
心脏病和糖尿病因眼睛运动异常而被转诊至神经科。在手术后三个月内,他接受了康德疗法,并因甲状腺弥漫性轴突损伤而受到弥散的轴突损伤,并因交通碰撞引起的宫颈椎间盘破裂。最近,由于心脏AR猝死引起的缺氧 - 缺血性脑损伤,该患者表现出异常的眼球运动。神经系统检查表明,他的眼睛处于营养状态,头部固定向左转,四肢瘫痪。学生的大小正常,并且对光反应。角膜和堵嘴反射也是双侧完整的。视频记录术显示,左侧的眼球震颤和小小的下滑,并在患者的角度(从患者的角度来看)扭转组件。去除光不会导致重大变化(图1a,补充视频
Tejado等人,2011年指出,需要准确的控制器以确保在导航期间安全。他们着重于设计用于雪铁龙自动型原型的低速控制的分数PI控制器的实现。他们得出结论,测试显示了提出的控制器的有效性[1]。Cohring,2012年为德国自动驾驶汽车提供了实时控制器体系结构。他描述了一种算法,证明了其在柏林茂密的城市交通中的适用性[2]。Alonso,Oria,Al-Hadithi和Jimenez,2013年,2013年提出了一个在线自我调整的PID控制器,用于控制车辆,沿着距离和速度在城市交通中典型的速度和速度。他们提出了一种调整技术,以改善不同输入或噪声存在下的鲁棒性[3]。
摘要 — 侵入式皮质脑机接口 (BMI) 可以显著改善运动障碍患者的生活质量。尽管如此,外部安装的基座存在感染风险,因此需要完全植入的系统。然而,这样的系统必须满足严格的延迟和能量限制,同时提供可靠的解码性能。虽然循环脉冲神经网络 (RSNN) 非常适合在神经形态硬件上进行超低功耗、低延迟处理,但它们是否满足上述要求尚不清楚。为了解决这个问题,我们训练了 RSNN 来解码两只猕猴的皮质脉冲序列 (CST) 中的手指速度。首先,我们发现大型 RSNN 模型在解码精度方面优于现有的前馈脉冲神经网络 (SNN) 和人工神经网络 (ANN)。接下来,我们开发了一个微型 RSNN,它具有较小的内存占用、较低的发放率和稀疏连接。尽管计算要求降低了,但生成的模型的性能明显优于现有的 SNN 和 ANN 解码器。因此,我们的结果表明,RSNN 在资源受限的情况下提供了具有竞争力的 CST 解码性能,并且是完全植入式超低功耗 BMI 的有希望的候选者,具有彻底改变患者护理的潜力。索引术语 — 脉冲神经网络、脑机接口、皮质脉冲序列解码、神经形态硬件