• Built on NXP Integral Security Architecture 3.0 • CC EAL 6+ certified HW and OS as environment to run NXP IoT applications, supporting fully encrypted communications and secured lifecycle management • Suitable for industrial IoT use cases with IEC62443-4-2 certified for the applicable requirements and product development lifecycle is compliant to IEC62443-4-1 certified secure process with maturity level 3 • Effective protection against advanced attacks, including Power Analysis and Fault Attacks of various kinds • Multiple logical and physical protection layers, including metal shielding, end-to-end encryption, memory encryption, tamper detection • Applet updatability feature for multicast applet updates or upgrades and additional applet loading in the field (see [8] ) • Support for secure UWB ranging in combination with Trimension products (FIRA compliant) • Matter Ready: SE051 provides the必要的加密功能,以支持连接智能家居设备的即将到来的物质标准。
在最低层次上,故障与技术有关。金属或多晶硅信号线的短路或开路等物理缺陷会改变电压、开关时间和其他特性。3 外部干扰也在这个层次上起作用,影响信号线、电荷存储和其他特性。在逻辑层次上,数字系统由门和存储元件建模,所有信号都表示为二进制值。低级容错策略旨在检测或屏蔽产生错误逻辑值的故障。由于其简单性,“卡住”模型是最广泛使用的逻辑故障模型,该模型假设故障在信号线上表现为固定的逻辑值。更复杂的模型是“桥接”故障,其中信号线之间的耦合导致一条线的逻辑值影响另一条线的值。其他复杂故障会改变门的基本逻辑功能,这在可编程逻辑阵列中经常发生,其中 AND/OR 阵列中连接的存在或不存在会导致功能中添加或删除蕴涵项。在更高的抽象级别(寄存器、算术逻辑单元、处理器等)中,故障通常表现为模块行为的变化,由其真值表或状态表表示。在此级别,故障建模通常更抽象,以方便在行为级别进行模拟;因此,通常会牺牲准确性。
在最低层次上,故障与技术有关。金属或多晶硅信号线的短路或开路等物理缺陷会改变电压、开关时间和其他特性。3 外部干扰也在这个层次上起作用,影响信号线、电荷存储和其他特性。在逻辑层次上,数字系统由门和存储元件建模,所有信号都表示为二进制值。低级容错策略旨在检测或屏蔽产生错误逻辑值的故障。由于其简单性,“卡住”模型是最广泛使用的逻辑故障模型,该模型假设故障在信号线上表现为固定的逻辑值。更复杂的模型是“桥接”故障,其中信号线之间的耦合导致一条线的逻辑值影响另一条线的值。其他复杂故障会改变门的基本逻辑功能,这在可编程逻辑阵列中经常发生,其中 AND/OR 阵列中连接的存在或不存在会导致功能中添加或删除蕴涵项。在更高的抽象级别(寄存器、算术逻辑单元、处理器等)中,故障通常表现为模块行为的变化,由其真值表或状态表表示。在此级别,故障建模通常更抽象,以方便在行为级别进行模拟;因此,通常会牺牲准确性。
在最低层次上,故障与技术有关。金属或多晶硅信号线的短路或开路等物理缺陷会改变电压、开关时间和其他特性。3 外部干扰也在这个层次上起作用,影响信号线、电荷存储和其他特性。在逻辑层次上,数字系统由门和存储元件建模,所有信号都表示为二进制值。低级容错策略旨在检测或屏蔽产生错误逻辑值的故障。由于其简单性,“卡住”模型是最广泛使用的逻辑故障模型,该模型假设故障在信号线上表现为固定的逻辑值。更复杂的模型是“桥接”故障,其中信号线之间的耦合导致一条线的逻辑值影响另一条线的值。其他复杂故障会改变门的基本逻辑功能,这在可编程逻辑阵列中经常发生,其中 AND/OR 阵列中连接的存在或不存在会导致功能中添加或删除蕴涵项。在更高的抽象级别(寄存器、算术逻辑单元、处理器等)中,故障通常表现为模块行为的变化,由其真值表或状态表表示。在此级别,故障建模通常更抽象,以方便在行为级别进行模拟;因此,通常会牺牲准确性。
n(3 + 0.002 lg n)逻辑 /抽象盘(也是2N)逻辑Qubits×2(d + 1)2个物理量子; d =代码区。= 27对于n = 2048 n 2(500 + lg n)toffoli门(“算术操作”)n 3(0.3 + 0.0005 lg n)测量深度(“时间”)[Häner等人,2020年,2020年]估计8n + 10.2 lg n逻辑Qubits n lg n逻辑Qubits对于N级纤维纤维纤维cur。破坏椭圆曲线在类似的经典安全级别似乎更容易。
学分:03先决条件:定量推理(i)发行:本科学位(包括副学士学位)的位置:2 - 4个学期类型类型:强制性领域:所有描述定量推理(II)都是一条顺序的本科课程,侧重于与数学和统计学分析技术的逻辑上的逻辑上的介绍,并适用于数学和统计学分析技术,以适应数学和统计学分析技术,并适应模型分析技术,现代世界的复杂性。该课程旨在使学生熟悉中断和分析数值数据所需的定量概念和技术,并在学生中灌输能力的逻辑推理来构建和评估参数,识别谬论,系统地思考。将定量推理的先决条件(i)作为其基础,本课程将使学生能够进一步进行定量,逻辑和关键的推理能力,以补充其特定的主要 /研究领域。课程学习成果在本课程结束时,学生应有:1。对逻辑和逻辑推理的理解:2。了解基本的定量建模和分析; 3。逻辑推理技能和能力将其应用于解决定量问题并评估论点; 4。能够通过适当的计算工具进行批判性评估定量信息以做出证据决策的能力。
学分:03先决条件:定量推理(i)发行:本科学位(包括副学士学位)的位置:2 - 4个学期类型类型:强制性领域:所有描述定量推理(II)都是一条顺序的本科课程,侧重于与数学和统计学分析技术的逻辑上的逻辑上的介绍,并适用于数学和统计学分析技术,以适应数学和统计学分析技术,并适应模型分析技术,现代世界的复杂性。该课程旨在使学生熟悉中断和分析数值数据所需的定量概念和技术,并在学生中灌输能力的逻辑推理来构建和评估参数,识别谬论,系统地思考。将定量推理的先决条件(i)作为其基础,本课程将使学生能够进一步进行定量,逻辑和关键的推理能力,以补充其特定的主要 /研究领域。课程学习成果在本课程结束时,学生应有:1。对逻辑和逻辑推理的理解:2。了解基本的定量建模和分析; 3。逻辑推理技能和能力将其应用于解决定量问题并评估论点; 4。能够通过适当的计算工具进行批判性评估定量信息以做出证据决策的能力。
超导量子位的相干时间随着时间的推移得到了极大改善。此外,使用工程耗散的小型逻辑量子位架构已显示出进一步改善由少量物理量子位组成的逻辑量子位流形相干性的巨大希望。尽管如此,小型逻辑量子位的最佳工作参数通常仍未得到很好的理解。这项工作通过研究三种不同且复杂度不断增加的案例,提出了几种寻找优先参数配置的方法。我们首先研究通过与有损物体耦合而使用耗散来实现单个量子位的状态稳定。我们研究这种纠错方法的限制因素,以及如何通过对有损物体具有有效时变耗散率的情况(我们称之为脉冲复位循环)通过数值优化参数耦合强度来解决这些问题。然后,我们将这种方法转化为更高效的状态稳定,并将其转化为抽象的三量子比特翻转代码,最后研究非常小的逻辑量子比特 (VSLQ)。通过使用这些技术,我们可以进一步增加不同架构的逻辑状态寿命。我们展示了使用脉冲复位循环相对于数值优化的固定参数空间的显著优势。
实现误差修正的逻辑量子比特及其之间的操作是进行有用量子计算的关键。离子振动模式系统是实现逻辑量子比特的良好候选。利用受激拉曼跃迁实现集体振动声子模式之间的分束器相互作用,从而实现声子模式之间的量子纠缠是实现逻辑量子比特之间操作的重要步骤。这种对多模式和压缩态的纠缠操作可用于生成连续变量簇态。此外,通过制备玻色子码作为离子振动态并利用上述分束器相互作用,可以实现跨多模式的门操作。
量子误差校正1-4通过将多个物理量子器组合到逻辑量子位中,提供了达到实用量子计算的途径,其中添加了更多的量子器,将逻辑错误率指数置于指数抑制。但是,仅当物理错误率低于临界阈值时,这种指数抑制才会发生。在这里,我们在我们最新一代的超导处理器柳树:距离-7代码和与实时解码器集成的距离-7代码和距离-5代码上介绍了两个以下阈值表面代码记忆。将代码距离增加2时,我们较大的量子存储器的逻辑错误率被λ= 2.14±0.02抑制,最终以101 Qubit的距离-7代码为0.143%±0.003%误差误差误差。这种逻辑记忆也超出了盈亏平衡,超过了其最佳物理值的寿命2.4±0.3。实时解码时,我们的系统保持低于阈值的性能,在5到100万个周期的距离时,平均解码器延迟为63微秒,周期时间为1.1微秒。我们还将重复代码运行到距离29,发现逻辑性能受到罕见相关误差事件的限制,大约每小时发生一次或3×10 9周期。我们的结果表明设备性能,如果缩放,则可以实现大规模易于故障量子算法的操作要求。