TravelBus可以用急性DSO作为MSO堆叠,但仅在逻辑分析模式下。在协议分析模式下,用户必须打开显示波形并捕获数据,然后将触发设置转换为逻辑分析模式,以用示波器堆叠。提取数据后,选择转换为逻辑分析和
现代候选候选物的现代平台,例如被困的离子或神经原子,可以通过穿梭量允许遥远的物理速度之间的长距离连通性。这为远处逻辑量子位之间的横向逻辑cnot门开辟了道路,从而在该控制和目标逻辑Qubits上的每个相应的物理量子之间执行物理cnot门。但是,横向cnot可以从一个逻辑量子频率传播到另一个逻辑量子,从而导致logimal Qubits之间的误差相关。我们已经开发了一个多通迭代解码器,该解码器分别解码每个逻辑量子量子,以处理这种符合的误差。我们表明,在电路级别的噪声和O(1)代码周期下,阈值仍然可以持续存在,并且逻辑错误率将不会显着分级,与p⌊d
量子误差校正通过在较大的量子系统中编码它来保护脆弱的量子信息,该系统的额外自由度可以检测和纠正错误。与裸露的物理量子相比,编码的逻辑量子标论具有折磨的复杂性。易于故障的协议包含错误的扩散,对于通过错误校正的逻辑量子定量抑制错误至关重要。在这里,我们在实验上证明了容忍缺陷的制备,旋转,误差综合征提取以及对9 QUITAR培根 - 培根代码中编码的逻辑量子的测量。对于逻辑量子,我们测量了平均易耐故障的准备和测量误差为0.6%,横向Clifford Gate的误差为0.3%。结果是一个编码的对数量子,其逻辑实现超出了用于创建它的纠缠操作的结合。我们将这些操作与能够生成任意逻辑状态的非耐受耐受的协议进行了比较,并观察了预期的误差增加。我们直接测量了四个培根 - 稳定器发生器,并能够检测到单量子的Pauli错误。这些结果表明,易于故障的量子系统目前能够使用错误率低于其组成部分的逻辑基原始人。随着未来的中间测量值的添加,可以实现可伸缩量子误差校正的全部功能。
摘要:由于量子信息技术在我们日常生活中的快速发展,考虑逻辑与物理之间的联系非常重要。本文讨论了一种受量子理论启发、使用算子的逻辑新方法,即特征逻辑。它使用线性代数表达逻辑命题。逻辑函数由算子表示,逻辑真值表对应于特征值结构。它通过将语义从使用投影算子的布尔二进制字母表 {0,1} 更改为使用可逆对合算子的二进制字母表 {+1, −1},扩展了经典逻辑的可能性。此外,对于任何字母表,都可以使用基于拉格朗日插值和凯莱-汉密尔顿定理的算子方法合成多值逻辑算子。考虑逻辑输入状态的叠加,可以得到一个模糊逻辑表示,其中模糊隶属函数是 Born 规则给出的量子概率。介绍了布尔、波斯特、庞加莱和组合逻辑与概率论、非交换四元数代数和图灵机的历史相似之处。受格罗弗算法的启发,提出了对一阶逻辑的扩展。特征逻辑本质上是一种运算符逻辑,其真值表逻辑语义由特征值结构提供,该结构被证明与逻辑量子门的普遍性有关,非交换性和纠缠起着根本性的作用。
摘要:由于量子信息技术在我们日常生活中的快速发展,考虑逻辑与物理之间的联系非常重要。本文讨论了一种受量子理论启发、使用算子的逻辑新方法,即特征逻辑。它使用线性代数表达逻辑命题。逻辑函数由算子表示,逻辑真值表对应于特征值结构。它通过将语义从使用投影算子的布尔二进制字母表 {0,1} 更改为使用可逆对合算子的二进制字母表 {+1, −1},扩展了经典逻辑的可能性。此外,对于任何字母表,都可以使用基于拉格朗日插值和凯莱-汉密尔顿定理的算子方法合成多值逻辑算子。考虑逻辑输入状态的叠加,可以得到一个模糊逻辑表示,其中模糊隶属函数是 Born 规则给出的量子概率。介绍了布尔、波斯特、庞加莱和组合逻辑与概率论、非交换四元数代数和图灵机的历史相似之处。受格罗弗算法的启发,提出了对一阶逻辑的扩展。特征逻辑本质上是一种运算符逻辑,其真值表逻辑语义由特征值结构提供,该结构被证明与逻辑量子门的普遍性有关,非交换性和纠缠起着根本性的作用。
量子纠错代表了大规模量子计算的重大进步。然而,在流行的表面编码策略中,以较低的开销实现非 Clifford 逻辑门的容错实现仍然是一个挑战。最近的进展强调了需要相当大的代码距离才能实现完全的容错。在这里,我们通过多次注入引入了一种非 Clifford 逻辑门的连续容错方案。与专注于单个逻辑链的现有协议不同,我们的方法利用多个逻辑链,每个逻辑链可以采用相同或不同的逻辑旋转角度来初始化非 Clifford 状态。与之前的努力相比,我们的协议显著减轻了与大代码距离要求相关的挑战,并减少了相应的资源开销,使其更易于通过表面编码策略在当前的中型芯片中实现。
马约拉纳零模式 (MZM) 是拓扑保护量子计算硬件的有希望的候选者,然而它们的大规模使用可能需要量子纠错。马约拉纳表面码 (MSC) 已被提议实现这一目标。然而,许多 MSC 属性仍未得到探索。我们提出了一个统一的 MSC“扭曲缺陷”框架——编码量子信息的任意子类对象。我们表明,MSC 中的扭曲缺陷可以编码两倍于基于量子位的代码或其他 MSC 编码方案的拓扑保护信息量。这是因为扭曲同时编码了逻辑量子位和“逻辑 MZM”,后者增强了微观 MZM 可以提供的保护。我们解释了如何使用逻辑量子位和逻辑 MZM 执行通用计算,同时可能使用比其他 MSC 方案少得多的资源。所有 Clifford 门都可以通过编织扭曲缺陷在逻辑量子位上实现。我们介绍了基于格子手术的逻辑 MZM 和逻辑量子位计算技术,实现了 Clifford 门的效果,且时间开销为零。我们还表明,逻辑 MZM 可能会在足够低的准粒子中毒率下改善空间开销。最后,我们介绍了一种新颖的 MSC 横向门模拟,通过编织微观 MZM 实现小代码中的编码 Clifford 门。因此,MSC 扭曲缺陷为容错量子计算开辟了新途径。
Full history taking including personal, medical and otological history, otological examination to exclude external or middle ear disease, basic audio logical evaluation including pure tone audiometry including air conduction for octave frequencies 250Hz through 8000Hz and bone conduction for octave frequencies 500Hz through 4000Hz, speech audiometry including speech recognition threshold (SRT) test using Arabic Bisyllabic Words (Qasim et al., 2021) ,word discrimination score (WD) test using Arabic monosyllabic Phonetically Balanced Words (Najem and Marie, 2021) , immittancemetry including tympanometry at varying pressure ranging from +200 to - 400 mmH2O to evaluate the middle ear pressure and its compliance , and acoustic reflex thresholds determination ipsilaterally and contraletrally using pure tones of 500、1000、2000和4000Hz。
图 3 概述了我们描述逻辑和物理扇区格式的三种方式。一些旧式和低容量 HDD 继续保留 512B 物理扇区大小。由于物理扇区和逻辑扇区大小相同,因此这些驱动器被描述为 512B 原生 (512n)。大多数较大的驱动器已移至 4096B 物理扇区,这产生了问题,因为许多主机应用程序无法重写以接受 4096B 逻辑扇区。通过大量努力,生态系统做出了必要的改变,以确保主机能够知道驱动器正在模拟 4KB 物理结构之上的 512B 逻辑扇区,称为 512 字节模拟 (512e)。然后,主机将能够将其写入与自然的 4KB 物理边界对齐,同时仍使用 512B 逻辑扇区,从而避免读取-修改-写入操作。现代主机现在能够利用 4KB 物理扇区和 512B 模拟,而不会影响性能。虽然存储生态系统的大部分都无法彻底改变自身以切换到 4KB 逻辑扇区,但一些主机应用程序确实做出了改变。为这些应用程序销售的驱动器被称为 4K 原生 (4Kn),因为逻辑和物理扇区大小均为 4096B。如今,市场上共存着三种驱动器类型,即 512n、512e 和 4Kn,具体取决于型号和容量。