在某些必需震颤(ET)的患者中,据报道,丘脑腹中间核的深脑刺激的有效性部分丧失,这可能是由于永久性刺激的习惯。这项研究的重点是随着时间的流逝,VIM局部势势(LFP)数据的演变,以评估基于丘脑活性的闭环治疗的长期可行性。我们使用Activa™PC + S(Medtronic Plc。允许同一区域的记录和刺激。特别注意描述LFP的演变,随着刺激的关闭后,手术后的3个月到24个月。We demonstrated a significant decrease in high-beta LFPs amplitude during movements inducing tremor in comparison to the rest condition 3 months after surgery (1.91 ± 0.89 at rest vs. 1.27 ± 1.37 µV 2 /Hz during posture/action for N = 8/10 patients; p = 0.010), 12 months after surgery (2.92 ± 1.75 at rest vs. 2.12 ± 1.78 µV n = 7/10患者的姿势/动作期间为2/Hz; p = 0.014)和手术后24个月(静止时为2.32±0.35 vs 0.75±0.78 µV 2/Hz 4/6患者的姿势/动作; p = 0.017)。在关闭刺激时表现出显着降低高βLFP振幅的患者中,在随访期间至少观察到了这一现象两次。尽管在诱导震颤过程中高βLFPS振幅的这种降低的程度可能会随着时间而变化,但这种运动的丘脑生物标志物可能长期用于闭环治疗。
酰基辅酶-A结合蛋白(ACBP),也称为地西epam结合抑制剂(DBI),是食欲和脂肪生成的有效刺激剂。生物信息学分析与系统筛选结合表明,过氧化物酶体增殖物激活的受体伽马(PPARγ)是转录因子,最能解释了包括肝脏和脂肪组织在内的代谢活性器官中的ACBP/DBI上调。PPARγ激动剂罗格列酮诱导的ACBP / DBI上调以及体重增加,这可以通过小鼠中的ACBP / DBI敲除。此外,PPARG的肝脏特异性敲低阻止了高脂饮食(HFD)诱导的循环ACBP/DBI水平上调,体重增加降低。相反,ACBP / DBI的敲除阻止了HFD诱导的PPARγ上调。Notably, a single amino acid substitution (F77I) in the γ 2 subunit of gamma-aminobutyric acid A receptor (GABA A R), which abolishes ACBP/DBI binding to this receptor, prevented the HFD-induced weight gain, as well as the HFD- induced upregulation of ACBP/DBI, GABA A R γ 2, and PPAR γ .基于这些结果,我们假设依靠ACBP/DBI,GABA A R和PPARγ的肥胖前馈环的存在。在任何水平上的中断,都无法区分地减轻HFD诱导的体重增加,肝脏toposisos和高血糖。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。是
抽象的人工神经网络(ANN)是用于建模和解码神经活动的最先进工具,但是将它们部署在具有严格的正时限制的闭环实验中,因为它们在现有的实时框架中的支持有限,因此具有挑战性。研究人员需要一个平台,该平台完全支持高级语言的运行ANN(例如Python和Julia),同时维持对低延迟数据获取和处理至关重要的语言的支持(例如C和C ++)。为了满足这些需求,我们介绍了实时异步神经解码(品牌)的后端。品牌包括Linux过程,称为节点,它们通过数据流在图中相互通信。其异步设计允许在可能在不同时间范围内运行的数据流并行执行,并可以在不同的时间范围内并行执行分析。品牌使用REDIS在节点之间发送数据,该节点可以实现快速的过程间通信并支持54种不同的编程语言。因此,开发人员可以轻松地将现有的ANN模型部署在品牌中,并具有最小的实施变化。在我们的测试中,在发送大量数据时,品牌在过程之间达到了<600微秒的潜伏期(在1毫秒块中的1024个频道30 kHz神经数据)。品牌运行一个带有复发性神经网络(RNN)解码器的大脑计算机界面,从神经数据输入到解码器预测,延迟的延迟少于8毫秒。该系统还支持使用动态系统(例如潜在因子分析)进行复杂的潜在变量模型的实时推断。在系统的真实展示中,Braingate2临床试验中的参与者T11执行了标准的光标控制任务,其中30 kHz信号处理,RNN解码,任务控制和图形均在品牌中执行。通过提供一个快速,模块化和语言敏捷的框架,品牌降低了将神经科学和机器学习中最新工具集成到闭环实验中的障碍。
植物已经发展了几种应对不断变化的环境的策略。一个例子是通过种子发芽给出的,当环境条件适合植物寿命时,必须发生这种情况。在模型系统中,拟南芥种子发芽是由光引起的。但是,在自然界中,无论这种刺激如何,几种植物的种子都可以发芽。虽然对光引起的种子发芽的分子机制有充分的理解,但在黑暗中管理发芽的分子机制仍然含糊不清,这主要是由于缺乏合适的模型系统。在这里,我们采用了氨基甲胺(Arabidopsis的近亲)作为强大的模型系统,以发现独立于光的发芽的分子机制。通过比较氨基胺和拟南芥,我们表明,维持促膜激素吉布雷素(GA)水平的维持促使豆蔻种子在黑暗和光条件下发芽。使用遗传学和分子生物学的特性,weshowththatthatthe cardamine dof转录反向doF影响发芽1(CHDAG1),与拟南芥转录因子Dag1同源,与该过程功能有关,从而通过负调节Ga Biosynthetic Genes chgaGaGA33Ox1和CHGA33Ox1和CHGA333Ox1和CHGA333Ox1和CHGA33Ox1和CHGA333Ox1和CHGA333Ox1和CHGA333Ox。我们还证明,这种机制可能在其他能够在黑暗条件下发芽的胸腺科中保存,例如鳞翅目sativum和Camelina sativa。我们的数据支持氨基胺作为适合研究光独立发芽研究的新模型系统。利用这一系统,我们还解决了一个长期存在的问题,该问题是关于控制植物中光依赖发芽的机制,为未来的研究打开了新的边界。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
卢西安·哈代于 20 世纪 90 年代提出的哈代悖论,为局域现实主义提供了一个简化的测试——局域现实主义是一种经典思想,即物理属性独立于观察而存在,并且没有信号超过光速。该悖论揭示了量子力学与局域现实主义之间的冲突,因为它表明,在某些条件下,三个“哈代事件”的概率为零,而量子力学预测第四个事件的概率不为零,这与局域现实主义相矛盾。
由于CMOS技术的物理规模限制,摩尔定律接近终结,替代计算方法已引起了相当大的关注,这是改善计算性能的方法。在这里,我们评估了一种新方法的性能前景,基于与约瑟夫森 - 界面的无序超导循环进行节能神经形态计算。突触权重可以存储为与多个约瑟夫森 - 界面(JJ)相连的三个超导环的内部捕获式磁通状态,并以以控制方式以离散通量(量化的通量)施加的输入信号调节。稳定的捕获的磁通状态将传入通量通过不同的途径,其流量统计量代表不同的突触权重。我们使用这些Fluxon Synapse设备的阵列探讨了矩阵 - 矢量 - 义务(MVM)操作的实现。我们研究了MNIST数据集的在线学习的能源效率。我们的结果表明,与其他最先进的突触设备相比,Fluxon Synapse阵列可以减少100倍的能量消耗。这项工作提出了概念验证,该概念将为基于超导材料的高速和高能节能的神经形态计算系统铺平道路。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要 目的 在通过脑机接口操纵假肢的过程中,皮质表面的分布式微刺激可以有效地向受试者提供反馈。这种反馈可以向假肢使用者传达大量信息,可能是获得假肢的精确控制和实施的关键。然而,到目前为止,人们对解码此类模式的生理限制知之甚少。在这里,我们旨在测试一种旋转光遗传反馈,该反馈旨在有效地编码假肢中使用的机器人执行器的 360° 运动。我们试图评估通过闭环脑机接口控制假肢关节的小鼠对其的使用情况。 方法 我们测试了小鼠优化虚拟假肢关节轨迹的能力,以解决奖励性伸手任务。它们可以通过调节初级运动皮层中单个神经元的活动来控制关节的速度。在任务期间,投射到初级体感皮层上的模式化光遗传刺激不断向小鼠传递有关关节位置的信息。主要结果 我们表明,小鼠能够在任务的主动行为环境中利用连续、旋转的皮质反馈。小鼠通过更频繁地检测奖励机会,以及通过将关节更快地移向奖励角区,并在奖励区停留更长时间,实现了比没有反馈时更好的控制。控制关节加速度而不是速度的小鼠无法改善运动控制。 意义 这些发现表明,在闭环脑机接口的背景下,可以利用具有优化形状和拓扑的分布式皮质反馈来控制运动。我们的研究直接应用于机器人假肢中经常遇到的旋转关节的闭环控制。 1. 简介