管道技术基于流体流动的普遍原理。当真实(粘性)流体流过管道时,其部分能量用于维持流动。由于内部摩擦和湍流,该能量被转换成热能。这种转换导致能量损失以流体高度来表示,称为水头损失,通常分为两类。第一种类型主要是由于摩擦,称为线性或主要水头损失。它存在于整个管道长度中。第二类称为次要或单一水头损失,是由于管网中存在的次要附属物和附件造成的。流体流动遇到的附属物是边界的突然或逐渐变化,导致流速的大小、方向或分布发生变化。这种主要和次要水头损失的分类是相对的。对于具有许多次要附属物的短管,总次要水头损失可能大于摩擦水头损失。在石油和水分配网络中,管道长度相当长,因此可以使用主要水头损失和次要水头损失这两个术语而不会产生混淆。为了对各种类型的水头损失进行一般而精确的公式化,人们进行了大量研究。Weisbach [1] 是第一个提出水头损失关系的人。正如 Bhave [2] 所指出的,Darcy 为推导关系的应用做出了巨大贡献,因此他的名字与 Weisbach 的名字联系在一起。因此,该关系通常称为 Darcy-Weisbach 公式。它本质上取决于摩擦系数和相对粗糙度。摩擦系数是雷诺数所表征的流态的函数。人们提出了几种摩擦系数的显式和隐式关系。Nikuradse [3] 进行了大量实验,实验涉及使用均匀大小的沙粒实现的光滑和人工粗糙管道。Nikuradse 图也称为 Stanton 图或 Stanton-Pannel 图,是这些研究的结果。 Colebrook [4] 比较了 Nikuradse 图表中的结果,发现其曲线与实际管道的曲线不匹配。但是,通过引入等效表面粗糙度的概念,可以将 Nikuradse 的结果用于商用管道。其他几位研究人员在文献中提供了不同的图表。Johnson [5] 使用几个无量纲组给出了商用管道的图表。Rouse [6] 绘制了代表
对涉及农产品(芽苗除外)种植活动的农业供水系统、农业用水实践、作物特性、环境条件和其他相关因素(包括检测结果,如适用)进行评估,以便:(1)识别可能将已知或合理可预见的危害引入涉及农产品或食品接触表面的任何条件;(2)确定是否合理必要采取措施,以降低涉及农产品或食品接触表面受到此类已知或合理可预见的危害污染的可能性。
神经科学的一个核心挑战是阐明大脑功能如何支持意识。在这里,我们将焦点深脑刺激的特定型结合在一起,与整个皮质的fMRI覆盖范围,在清醒和anaes的非人类灵长类动物中。在丙泊酚,sevo ureane或氯胺酮麻醉期间,以及随后通过中央丘脑的电态恢复响应性,我们研究意识的丧失如何影响跨尺度的结构功能组织的分布模式。我们报告说,在麻醉下分布的大脑活动受到跨尺度的大脑结构的限制,与层次层层组织的多个维度的麻醉诱导的崩溃相吻合。在不同的麻醉剂中观察到这些分布的特征,并且通过对中央丘脑的电刺激逆转它们,与唤醒的行为标记的恢复相吻合。在刺激腹侧丘脑的刺激时,没有观察到这种影响,证明了山丘。总体而言,我们确定了特定的丘脑核精心策划的意识的一致分布签名。
尽管已经提出了多巴胺系统的年龄差异基于横断面数据导致与年龄相关的认知下降,但最近的大型横截面研究报告说,仅报告衰老,多巴胺受体可用性和认知的相关性证据较弱。无论如何,纵向数据对于对多巴胺损失作为认知衰老的基础仍然具有强大的陈述至关重要。我们表现出D2/3多巴胺受体可用性的变化与健康的老年人超过5年的工作记忆变化之间的相关性(n = 128,基线时64至68岁)。Greater decline in D2/3 dopamine receptor availability in working memory-relevant regions (caudate, middle frontal cortex, hippocampus) was related to greater decline in working memory performance in individuals who exhibited working memory reductions across time ( n = 43; caudate: r s = 0.494; middle frontal cortex: r s = 0.506; hippocampus; r s = 0.423), but not in individuals who保持性能(n = 41;尾状:r s = 0.052;中额皮层:r s = 0.198;海马; r s = 0.076)。在Orbitrontal Cortex中未观察到偏链中的多巴胺 - 工作记忆链路,该链不属于核心工作记忆网络。我们的纵向分析支持了以下观点:多巴胺系统中与衰老相关的变化有助于衰老的工作记忆下降。
定义了一种用于评估电热 (EC) 材料冷却效率的新品质因数,其中将热性能与材料的损耗共同考虑。使用专门开发的基于柔性热敏电阻的测量装置,直接测量 P(VDF-TrFE-CFE) 电热聚合物薄膜的热效应和损耗。利用这些数据与新的品质因数,可以推断出所研究的 EC 材料在实际工作条件下的预期冷却效率。介电损耗是实现所需冷却性能的主要限制因素。这一发现表明,除了研究巨大的热响应之外,还必须将减少材料损失视为研究用于冷却应用的最佳 EC 制冷剂的关键目标。最后,概述了一些减少损失的策略。
MID-IR波长范围(通常定义为跨度为3至13 µm)覆盖了各种大气气体的分子吸收区域。因此,MID-IR集成光子学,即将复杂和先进的光学功能整合到芯片上,这代表了开发基于光谱的气体检测的紧凑,成本效益的仪器的有希望的途径[1-6]。这些结构通常是用光刻技术制造的,这些技术限制了所得设备的可重新配置和可调性。通过在介电波导顶部涂上额外的层[7],证明了一些修剪后的后处理能力。走得更远,并为这些结构启用真正的后制成调音机制,一种有吸引力的方法是将它们与相变材料(PCM)相结合。这些材料可以可逆地在具有不同光学特性的无定形和晶体相之间切换。常规PCM的众所周知的例子是GE 2 SB 2 TE 5(GST)[8,9]和VO 2 [10-14]。GST由于其出色的特征而引起了强烈的关注,包括其两个阶段(∆ n> 2.5),低切换温度(〜180°C)之间的近红外折射率对比度以及保持其状态而无需任何电源的能力。在电信C波段上运行的许多集成设备,例如光学记忆[15],模式转换器[16],反射调节器[17],环谐振器[18],窄带过滤器[19]或基于GST的相位变速器[20] [20]。然而,尽管不断研究和提高其潜力的努力,但其可用性仍然主要限于要求光的应用
与年龄相关的神经退行性疾病涉及细胞数量减少和行为能力受损。神经变性和行为缺陷在衰老期间也出现,尤其是在没有疾病的情况下。调节运动和认知的小脑容易受到衰老和疾病的细胞损失。在这里,我们证明了老年小鼠的小脑Purkinje细胞损失在空间上不是随机的,而是出现在旁皮条纹的模式下。我们还发现,与年轻小鼠相比,老年小鼠的运动配位受损和更严重的震颤。然而,图案化的Purkinje细胞损失与运动功能障碍之间的关系并不简单。对神经学典型个体的人类小脑的死后样本的检查支持在衰老期间的选择性丧失Purkinje细胞的存在。这些数据揭示了小脑衰老的时空细胞底物,可以告知神经元脆弱性如何导致神经变性和随之而来的行为恶化。
摘要 - 植物遗传疾病主要影响妇女,并成为一个公共卫生问题,尽管他们的病理生理学仍然知之甚少。作为主要的器官经历了针对病理学的运动和变形,动态MRI是现在的放射科医生的金标准。器官边界,器官形状的受试者间变异性和病理畸形使得段难以执行。为了开发一个朝着病理分级的成像软件,器官边界的MRI分割的准确性是一个关键标准。自动方法尚未足够准确,无法替代强制性的手动分割步骤。已经开发了使用完全卷积神经网络(FCN)的自动分割方法,但通常用于训练的损耗功能通常不足以适合器官边界检测。我们提出了一个专门用于器官边界检测的损失函数,以增强训练,从而提高结果准确性。使用基线U-NET体系结构[1]对Dynamic 2D MRI的膀胱分割进行了评估该方法。结果表明,与广泛使用的骰子损失相比,我们的边界损失函数以及骰子损失的使用优于现有方法,并提高了分割精度。索引项 - 图像分割,完全卷积的网络,混合损失,距离损失,动态MRI,骨盆
s n Bose在量子统计上的开创性工作为开发现代量子技术(包括Bose-Einstein凝结,量子超导性和量子信息理论)铺平了道路。一半的宇宙中的基本粒子以他的名字命名-Boson。该会议强调,23个国家已经建立了国家量子任务,印度在国际水平上做出了重大贡献,尤其是在量子算法领域。
Ilaria Greco ID 1 *,Lyelic Beaudrot 2.3,Chris Sutherland 4,Simone Tenan 5,Syone 2.3,Daniel Gorzynski 6,Ahumada 13,Rajan Amin 14,Megan Baker-Watton 1 Cremonesi 1 Cremonesi 1 Cremonesi 1 Cremonesi 1 Cremonesi 23:Adeline Fayolle 22:28,Adeline Fayolle 22:28,Davy Fonty Harry 31 22 Alys Granados 32.33,Patrick A. Jansen 34.35,Jayasilan Mohd-Azlan 11,Caspian Johnson Marcelo Magio 21:41,42,Emanuel H. Martin 43,Adriano Martinole版本28,Patrics C. Wright C. Wright C. Wright 25.50,C.