摘要 中风、脑和脊髓创伤等中枢神经系统 (CNS) 损伤常常会导致永久性残疾,因为成人 CNS 神经元仅表现出有限的轴突再生。大脑具有令人惊讶的损伤后自我恢复的内在能力。然而,恶劣的外部微环境严重阻碍了轴突再生。最近的进展表明,内在再生途径的失活在大多数成人 CNS 神经元再生失败中起着关键作用。特别是,大量证据令人信服地证明雷帕霉素的机制靶点 (mTOR) 信号传导是驱动各种 CNS 损伤中轴突再生和发芽的最关键的内在再生途径之一。在这篇综述中,我们将讨论最近的发现,并强调 mTOR 通路在不同类型 CNS 损伤中轴突再生中的重要作用。重要的是,我们将证明,通过阻断关键的 mTOR 信号成分(如磷酸酶和张力蛋白同源物 (PTEN))可以重新激活该再生途径。鉴于多种 mTOR 信号成分是该途径的内源性抑制因子,我们将讨论特别适合此目的的基于 RNA 的疗法的良好潜力,以及它们在 2019 年冠状病毒病疫苗成功后最近引起了广泛关注的事实。为了专门解决血脑屏障问题,我们将回顾当前将这些 RNA 疗法输送到大脑的技术,重点是纳米颗粒技术。我们将提出将这些 RNA 介导的疗法与针对 mTOR 信号成分的脑靶向药物输送方法相结合的临床应用,作为一种有效可行的治疗策略,旨在增强轴突再生,实现中枢神经系统损伤后的功能恢复。关键词:轴突发芽;轴突再生;脑靶向药物输送;中枢神经系统损伤;缺血性中风;mTOR;纳米粒子;神经回路重建; PTEN;基于 RNA 的疗法
摘要 背景 T 细胞介导疗法,例如嵌合抗原受体 T 细胞和 T 细胞双特异性抗体 (TCB),可有效地将 T 细胞重定向至肿瘤细胞,促进细胞毒性突触的形成并导致随后的肿瘤细胞杀死,该过程伴随着细胞因子的释放。尽管 TCB 在临床上具有良好的疗效,但其治疗与细胞因子释放综合征 (CRS) 的风险有关。本研究的目的是确定能够减轻细胞因子释放同时保留 T 细胞介导的肿瘤杀伤的小分子。方法通过筛选 52 种美国食品和药物管理局批准的激酶抑制剂库,以确定它们对 CD3 刺激后 T 细胞增殖和细胞因子释放的影响,我们确定了 mTOR、JAK 和 Src 激酶抑制剂是调节药理活性剂量下 TCB 介导的细胞因子释放的潜在候选药物。利用人外周血单核细胞杀伤靶细胞的体外模型,我们评估了 mTOR、JAK 和 Src 激酶抑制剂与 2+1 T 细胞双特异性抗体 (TCB) 包括 CEA-TCB 和 CD19-TCB 联合使用对 T 细胞活化、增殖和靶细胞杀伤的影响,通过流式细胞术测量,通过 Luminex 测量细胞因子释放。在无肿瘤干细胞人源化 NSG 小鼠中体内评估了 mTOR、JAK 和 Src 激酶抑制剂与 CD19-TCB 的组合在 B 细胞耗竭方面的效果,并在人源化 NSG 小鼠的淋巴瘤患者来源的异种移植 (PDX) 模型中评估了其抗肿瘤功效。结果 Src 抑制剂的作用与 mTOR 和 JAK 抑制剂不同,其体外抑制 CD19- TCB 诱导的肿瘤细胞裂解,而 mTOR 和 JAK 抑制剂主要影响 TCB 介导的细胞因子释放。重要的是,我们在体内证实了 Src、JAK 和 mTOR 抑制剂可显著降低 CD19-TCB 诱导的细胞因子释放。在人源化 NSG 小鼠中,使用 Src 抑制剂持续治疗可防止 CD19-TCB 介导的 B 细胞耗竭,而使用 mTOR 和 JAK 抑制剂则可保留 CD19-TCB 功效。最终,在淋巴瘤 PDX 模型中,使用 Src、mTOR 和 JAK 抑制剂进行短暂治疗可最大程度地抑制抗肿瘤功效。
简介心肌病 (CM) 是一组异质性心肌疾病,可分为肥厚性 CM (HCM)、扩张性 CM (DCM) 和限制性 CM (RCM) (1–4)。已鉴定出 CM 的遗传因素,且有 100 多个基因与不同类型的 CM 相关 (5, 6)。已建立动物模型并用于发现关键信号通路和治疗策略。已鉴定出至少 7 条具有治疗潜力的 CM 信号通路,包括丝裂原活化蛋白激酶 (MAPK) 信号转导、mTOR 信号转导、β -肾上腺素能受体信号转导、磷酸二酯酶 5 (PDE5) 信号转导、组蛋白去乙酰化酶 (HDAC) 信号转导、Ca 2+ /钙调蛋白依赖性激酶 II 信号转导和钙调磷酸酶-活化 T 细胞核因子 (Cn-NFAT) 信号通路 (7–9)。例如,mTOR 是一种丝氨酸/苏氨酸蛋白激酶,在调节心肌细胞蛋白质稳态方面起着关键作用 (10–12);通过药理学或遗传学方法部分抑制 mTOR 可对几种类型的心肌病产生心脏保护作用,包括 lamp2 相关 HCM (13)、bag3 相关和层蛋白 A/C 相关 DCM (14, 15) 以及贫血和阿霉素诱发的心肌病 (DIC) (16)。相反,已发现 MAPK 几乎在每种应激和激动剂诱发的肥大刺激下都会激活,并以独特的方式调节心脏离心和向心生长之间的平衡 (17, 18)。 MAPK 的激活会导致离心性肥大并促进肌细胞延长,而抑制细胞外信号调节激酶 (ERK) 通路会减弱对压力超负荷的肥大反应 (19)。MYH7,也称为 β - 肌球蛋白重链,是第一个被确定的 CM 致病基因,后来被确定为约 18% 的 HCM 病例的病因 (20–22)。在人类中,MYH7 与 MYH6 串联位于 14 号染色体上,MYH7 是位于 MYH6 上游的主要成体亚型。在小鼠中,Myh7 和 Myh6 也串联位于 14 号染色体上;然而,上游的 Myh7 基因
白鲜碱 (Dictamnine, Dic) 是一种从白鲜根皮中分离出来的天然小分子呋喃喹啉生物碱,据报道具有抗癌特性。然而,人们对 Dic 的直接靶蛋白和抗癌机制知之甚少。在目前的研究中,发现 Dic 可在体外和体内抑制肺癌细胞的生长,并通过抑制受体酪氨酸激酶 c-Met 的磷酸化和活化来减弱 PI3K/AKT/mTOR 和丝裂原活化蛋白激酶 (MAPK) 信号通路的活化。此外,使用细胞热位移分析 (CETSA) 和药物亲和力响应靶标稳定性 (DARTS) 分析证实了 Dic 与 c-Met 的结合。在所有测试的癌细胞系中,Dic 对 c-Met 依赖性 EBC-1 细胞增殖的抑制作用最强 (IC 50 = 2.811 μ M)。值得注意的是,Dic 显示出协同作用,可提高表皮生长因子受体酪氨酸激酶抑制剂 (EGFR-TKI) 耐药肺癌细胞对吉非替尼和奥希替尼的化学敏感性。这些结果表明,Dic 是一种 c-Met 抑制剂,可作为治疗肺癌的潜在治疗剂,尤其是针对 EGFR TKI 耐药和 c-Met 依赖性肺癌。
摘要:多形性胶质母细胞瘤 (GBM) 是一种 IV 级星形细胞瘤,是一种预后不良的致命脑肿瘤。尽管 GBM 的分子生物学最近取得了进展,但神经肿瘤学家可用于改善 GBM 患者生存率的治疗选择非常有限。与 GBM 发病机制有关的主要信号通路是雷帕霉素的机制靶点 (mTOR)。在临床前阶段,使用第一代 mTOR 抑制剂靶向 mTOR 通路的尝试似乎很有希望;然而,由于 GBM 的异质性、治疗逃逸机制、血脑屏障、药物相关毒性以及临床试验设计不完善等原因,临床试验结果令人失望。下一代 mTOR 抑制剂的开发及其在临床试验中的当前评估为实现 mTOR 抑制剂在 GBM 中的临床潜力带来了新的希望。与此同时,研究也在不断加深我们对胶质母细胞瘤中 mTOR 信号失调、其下游效应及其与其他信号通路相互作用的理解。因此,针对胶质母细胞瘤中的 mTOR 进行治疗最终是卓有成效还是徒劳无功仍有待观察。
mTORC1 和 AMPK 是相互拮抗的营养和能量状态传感器,与许多人类疾病有关,包括癌症、阿尔茨海默病、肥胖症和 2 型糖尿病。社会性变形虫 Dictyostelium discoideum 的饥饿细胞会聚集并最终形成由柄细胞和孢子组成的子实体。我们关注如何实现细胞命运的这种分歧。在生长过程中,mTORC1 高度活跃,而 AMPK 相对不活跃。饥饿时,AMPK 被激活而 mTORC1 被抑制;细胞分裂被阻止并诱导自噬。聚集后,少数细胞(前柄细胞)继续表达与聚集期间相同的发育基因集,但大多数细胞(前孢子细胞)切换到前孢子程序。我们描述了表明过表达 AMPK 会增加前柄细胞比例的证据,抑制 mTORC1 也会增加前柄细胞的比例。此外,刺激细胞内酸性区室的酸化同样会增加前柄细胞的比例,而抑制酸化则有利于孢子途径。我们得出结论,细胞分化的前柄途径和前孢子途径之间的选择可能取决于 AMPK 和 mTORC1 活性的相对强度,这些活性可能受细胞内酸性区室/溶酶体 (pHv) 的酸度控制,pHv 低的细胞具有高 AMPK 活性/低 mTORC1 活性,pHv 高的细胞具有高 mTORC1/低 AMPK 活性。深入了解这种转换的调节和下游后果应该会提高我们对其在人类疾病中潜在作用的理解,并指出可能的治疗干预措施。
有20个膜结合受体酪氨酸激酶(RTK)的亚家族,包括58个成员(1)。这些RTK是信号转导途径的重要调节因子,将细胞内和细胞外提示整合以控制细胞生长,分化,增殖,生存和代谢。RTK中的遗传和表观遗传学改变会导致激酶活性消失,从而导致多个下游信号传导途径发生变化(2)。 RTK介导的信号传导途径的改变是肿瘤发生和抗癌治疗失败的主要机制之一,靶向RTK信号是开发目标癌症治疗作为单一疗法或与其他治疗方式结合的主要策略(2,3)。 AKT(也称为蛋白激酶B) - 雷帕霉素(MTOR)的机理靶标是RTK信号传导最重要的下游效应器之一(4,5)。 对Akt-MTOR的放松管制可能是由许多因素引起的,包括但不限于RTK的突变和/或扩增,RTK配体的过表达,磷脂酰辛醇3-激酶(PI3K)亚基的突变和/或RAS和磷酸化酶和磷酸化酶的突变(PTEN)(PTEN)(PTEN)(PTEN)(PTEN)(PTEN)。 Akt-MTOR信号在大多数癌症中失调,被认为是一个重要而有吸引力的癌症治疗靶标。 在过去的几十年中,已经做出了广泛的努力,以开发针对Akt-MTOR信号传导的抑制剂,尤其是mTOR激酶抑制剂。 然而,尽管在临床前研究中非常有前途,但大多数临床试验的结果令人失望,这些抑制剂作为单药治疗的影响很差(8,9)。RTK中的遗传和表观遗传学改变会导致激酶活性消失,从而导致多个下游信号传导途径发生变化(2)。RTK介导的信号传导途径的改变是肿瘤发生和抗癌治疗失败的主要机制之一,靶向RTK信号是开发目标癌症治疗作为单一疗法或与其他治疗方式结合的主要策略(2,3)。AKT(也称为蛋白激酶B) - 雷帕霉素(MTOR)的机理靶标是RTK信号传导最重要的下游效应器之一(4,5)。对Akt-MTOR的放松管制可能是由许多因素引起的,包括但不限于RTK的突变和/或扩增,RTK配体的过表达,磷脂酰辛醇3-激酶(PI3K)亚基的突变和/或RAS和磷酸化酶和磷酸化酶的突变(PTEN)(PTEN)(PTEN)(PTEN)(PTEN)(PTEN)。Akt-MTOR信号在大多数癌症中失调,被认为是一个重要而有吸引力的癌症治疗靶标。在过去的几十年中,已经做出了广泛的努力,以开发针对Akt-MTOR信号传导的抑制剂,尤其是mTOR激酶抑制剂。然而,尽管在临床前研究中非常有前途,但大多数临床试验的结果令人失望,这些抑制剂作为单药治疗的影响很差(8,9)。要了解大多数癌症在临床条件下对Akt-MTOR靶向癌症治疗不敏感或不响应的潜在机制,迫切需要深入探索Akt-MTOR信号在自主癌细胞调节中的作用以及肿瘤环境。关于Akt-MTOR信号传导在调节癌症免疫(10-13)和DNA损伤反应(14-17)中的基本作用的最新发现(14-17)可能会揭示临床前研究和临床研究之间结果的明显差异。这些最近的发现还为我们提供了新的机会,可以合理地将Akt-MTOR抑制剂与其他癌症治疗方式,尤其是基于免疫检查点阻滞的免疫疗法相结合。本评论将重点讨论AKT-MTOR信号调节编程死亡配体(PD-L1)和DNA损伤响应
mTOR - 患有晚期激素受体阳性、HER2 阴性乳腺癌的绝经后妇女(与依西美坦联合使用)。 - 患有胰腺源性进行性神经内分泌肿瘤的成年人(不可切除、局部晚期或转移性疾病)。 - 患有晚期肾细胞癌的成年人。 - 患有肾血管平滑肌脂肪瘤和结节性硬化症的成年人(无需立即手术)。 - 治疗结节性硬化症患者的室管膜下巨细胞星形细胞瘤(无法治愈性切除)。
摘要◥目的:本I阶段研究评估了PI3K/MTORC1/2双重抑制剂Gedatolisib与碳蛋白和紫杉醇结合的安全性,耐受性,小麦克甲酸和初步活性。患者和方法:接受≤2次先前化学疗法治疗的晚期实体瘤的患者在第1、8、15和22天接受静脉注射Geda-tolisib(根据剂量水平为95、110或130 mg);在第8天(协议修正案之后的第1天)卡铂(AUC5);每28天,在第8、15和22天,在第8、15和22天(1、8和15)的80 mg/m 2的紫杉醇每28天。第6周期后没有疾病的患者接受了维持Gedatolisib直至进展。 结果:17例患者被招募[11个卵巢(10个透明细胞卵巢癌,CCOC),4个子宫内膜,2个肺癌]。 先验化学疗法的中位数为1(范围0-2)。 中值第6周期后没有疾病的患者接受了维持Gedatolisib直至进展。结果:17例患者被招募[11个卵巢(10个透明细胞卵巢癌,CCOC),4个子宫内膜,2个肺癌]。先验化学疗法的中位数为1(范围0-2)。中值
早在 2017 年和 2018 年火灾季节肆虐加州并发生该州历史上最具破坏性的火灾之前,加州北部的圣罗莎初级学院 (SRJC) 就明白了可持续能源生产的重要性。人们普遍认为,火灾的强度因气候变化而加剧,但这也坚定了学校实现成为零净能源区和到 2030 年实现碳中和运营的目标的决心。但是,当加州北部一家投资者所有的公用事业公司太平洋天然气和电力公司 (PG&E) 开始实施公共安全断电措施,因为几起火灾被归咎于老旧和有故障的设备时,该学院意识到它还需要一个有弹性和可靠的电网。学校求助于 PXiSE Energy Solutions,这是一家利用