珊瑚礁是世界上最重要的生态系统之一,具有极大的生态和经济意义。但是,由于各种人为因素,包括气候变化,过度捕获和漏油污染,珊瑚礁正受到威胁。这些因素导致珊瑚礁健康和生物多样性的下降,导致迫切需要有效缓解和恢复策略。石油产物的广泛使用会导致漏油[1],已有数十年的报道[2-4]。海洋溢出是最常见的,每年大约有103吨油洒到海洋中[5]。不幸的是,海洋中的石油运输路线经常在重要的珊瑚礁附近经过,并且在珊瑚礁地区附近发生了许多重大石油泄漏[4]。自1990年代以来,由于全球对石油和天然气的需求,海上石油和天然气的生产也有所增加,这导致海洋环境和珊瑚礁发生事故的可能性显着增加[6]。
生产” 位于法国南部(普罗旺斯)卡达拉什中心的 BIAM 研究所的“生物能源和微藻”(EBM)团队有一个永久科学家职位开放 科学家将启动对微藻进行基因操作(基因工程、合成生物学或基因组编辑)的项目,以引入新途径或改进现有的途径来生产感兴趣的分子。研究将对模型微藻莱茵衣藻或科学家可能提议在团队内开发的其他藻类或蓝藻物种进行。科学问题可以很大,包括从改善生长和二氧化碳吸收,到增强脂质储存,或重新定向碳通量以促进感兴趣分子的生产,但它应该符合主办团队的主要使命(见下面的描述)。主办团队的使命和活动 您将受益于主办团队的专业知识(https://www.cite-des-energies.fr/biam/recherche/ebm/)以及 BIAM 研究所、CEA 和艾克斯-马赛大学的环境(https://www.cite-des-energies.fr/biam/plateformes-technologiques/)。您将在“生物能源和微藻”团队中工作,该团队由 4 名科学家、4 名工程师、3 名技术人员以及通常 3-5 名博士生和博士后组成。EBM 团队的主要目标是探索微藻在生物技术应用方面的潜力,特别是在生物能源领域。具体来说,我们研究 CO 2 的光还原过程,以形成和储存富含能量的分子(例如脂质和烷烃)。该研究基于在莱茵衣藻等模型生物上开发的遗传、生物化学、脂质组学和生物物理方法,以确定光合作用和脂质代谢的关键基因,并探索生物多样性以寻找感兴趣的酶、代谢途径或光合微生物。
图 3:OT 系统和光学原理图,以及通过不同 OT 设置进行光学微型机器人操作的概念图。(a)基于分时生成多个激光点的传统 OT 系统;相应 OT 系统的光学原理图。(b)使用传统 OT 系统灵巧操作光学微型机器人的概念图。(c)可以产生多个激光点的传统全息光镊 (HOT) 系统;相应 HOT 系统的光学原理图。图片来自 [13]。(d)使用 HOT 系统灵巧操作光学微型机器人的概念图。面板 (a) 根据 CC-BY 许可条款从 [14] 复制。版权所有 2020,作者,由 Wiley 出版。面板 (c) 经许可从 [13] 复制。版权所有 2019,IEEE。
Alexander Khazatsky ∗, 1, Karl Pertsch ∗, 1, 2, Suraj Nair 1, 3, Ashwin Balakrishna 3, Sudeep Dasari 1, Siddharth Karamcheti 1, Sorous Nasiranya 5, Mohan Kumar Srirama 4, LawprenCe Yunliang Chen 2, Kirsty Ellis 6, Peter David Fagan 7, Joey Hejna 1, Masha Itkina 3, Marion Lepert 1, Jason Ma 14, Patrick TREE Miller 3, Jimmy Wu 8, Suneel Belkhale 1, Shivin Dass 5, Huy Ha 1, Abraham Lee 2, Youngwoon Lee 2, 16, Arhan Jain 9, Marius Memmel 9, Sungjae Park 10, Ilija Radosavovic 2, Kaiyuan Wang 11,Albert Zhan 6,Kevin Black 2,Cheng Chi 1,Kyle Hatch 3,San Lin 11,Jingpei Lu 11,Abdul Rehman 7,Pannag r Sanketi 12,Archide Sharma 1,Cody Simpson 3,Cody Simpson 3,Quan Vuong 12,Quan Vuong 12,Quan Vuong 12,Homer Walke 2,Blake Wulfe 3,Blake Wulfe 3,Te Xiao 12 Z. Charlotte Le 2, Yunshuang Li 14, Kevin Lin 1, Roy Lin 2, Zehan Ma 2, Abhiram Maddukuri 5, Suvir Mirchandani 1, Daniel Morton 1, Tony Nguyen 3, Abby O'Neill 2, Rosario Scalise 9, Derick Seale 3, Victor Son 1, Stephen Tian 1, Andrew Wang 2, Yilin Wu 4, Annie XIIE 1,Jingyun Yang 1,Patrick Yin 9,Yunchu Zhang 9,Osbert Bastani 14,Glen Berseth 6,Jeannette Bohg 1,Ken Goldberg 2,Abhinav Gupta 4,Abhishek Gupta 9,Abhishek Gupta 9,Dinesh Jayaraman 14 Rammamoorthy 7,Dorsa Sadigh 1,Shuran Song 1,15,Jiajun Wu 1,Yuke Zhu 5,Thomas Kollar 3,Sergey Levine 2,Chelsea Finn 1
屏幕靠近手(4)。其他可视化符合人体工程学的考虑因素包括立体声音,感觉齐射,视觉空间能力和视觉疲劳。外科医生的物理分离是Rs期间流动中断(FDS)的主要贡献者,这可能会导致错误率提高(5)。可能会反对FD的干预措施包括团队培训,更好的手术室空间配置,带读书的标准化沟通分类,技术实施,支持弹性和使用清单。机器人援助对认知工作量的影响很复杂(6)。更好相关的姿势,可视化和操纵人体工程学可能会促进将认知资源委派给身体任务的需求,但是这可能会被降低与身体分离,沟通困难,控制更多工具,有限的视野和缺乏具有相认为的反馈相关的情境意识所抵消。机器人系统通过具有七个自由度(DOF),支点消除,震颤过滤和运动缩放的铰接仪器提供了更好的操纵人体工程学(7)。与LS相比,这些机器人操纵益处的存在已被证明可使右手的灵巧性增加55%,而左手的灵巧性增加了45%(8)。在模拟设置中,具有二维视觉的机器人缝合任务中的基于技能的中值错误从腹腔镜缝合任务中的23个下降到8.5。这些因素可能会影响研究中研究的有效性。目标关于机器人系统操纵益处的研究主要是在模拟设置中进行的,并使用运动学数据和不同经验水平的外科医生的工作时间进行了评估。
摘要 - 机器人武器应该能够学习新任务。这里的一个框架是强化学习,在该学习中,机器人具有编码任务的奖励函数,并且机器人自主学习的动作以最大程度地提高其奖励。现有的强化学习方法通常将此问题构成马尔可夫决策过程,并学习政策(或政策层次结构)以完成任务。这些政策原因是机器人臂需要采取的数百个细粒度的动作:例如,向右移动稍微移动或旋转几个度。但是我们希望机器人执行的操作任务通常可以分解为少数高级运动:例如,到达对象或转动手柄。在本文中,我们提出了一种基于通道的无模型增强学习方法。机器人现在没有学习低级策略,而是学习路点的轨迹,然后使用现有控制器在这些航路点之间进行插值。我们的关键新颖性是将基于Waypoint的设置作为一系列多臂匪徒构建:每个匪徒问题都对应于机器人运动沿线的单路点。从理论上讲,与标准框架相比,对这种重新制定的理想解决方案的遗憾界限较低。我们还引入了一个近似的后固定解决方案,该解决方案一次构建机器人的运动点。跨基准模拟和两个现实世界实验的结果表明,这种提出的方法比最先进的基线更快地学习新任务。请参阅此处:https://youtu.be/mmed-lyfq4y
摘要 - 模仿学习在使用相机的视觉反馈执行高精度操纵任务方面具有巨大的潜力。但是,在模仿学习的常见实践中,将摄像机固定在适当的位置,从而导致遮挡和有限的视野等问题。此外,摄像机通常被放置在宽阔的一般位置,而没有特定于机器人任务的有效观点。在这项工作中,我们研究了主动视力(AV)对模仿学习和操纵的效用,在该工作中,除了操纵政策外,机器人还从人类的演示中学习了AV政策,以动态地改变机器人的相机观点,以获取有关其环境和给定任务的更好信息。我们介绍了AV-Aloha,这是一种带有AV的新型双层远程处理机器人系统,AV的扩展是Aloha 2机器人系统的扩展,并结合了一个仅携带立体声摄像机的额外的7多型机器人臂,仅负责找到最佳视图点。此相机将立体视频流向戴着虚拟现实(VR)耳机的操作员,使操作员可以使用头部和身体运动来控制相机的姿势。该系统提供了具有双层第一人称控制的身临其境的远程操作体验,从而使操作员能够动态探索和搜索场景并同时与环境进行交互。我们在现实世界和模拟中对系统进行模仿学习实验,这些任务强调观点计划。项目网站:https://soltanilara.github.io/av-aloha/我们的结果证明了人类引导的AV在模仿学习中的有效性,显示了可见性有限的任务中固定相机的显着改善。
摘要 - 视觉语言动作(VLA)模型的出现已经引起了机器人的基础模型。尽管这些模型取得了显着改进,但它们在多任务操作中的概括仍然有限。本研究提出了一个VLA模型专家集合框架,该框架利用有限的专家行动来增强VLA模型性能。这种方法相对于手动操作减少了专家工作量,同时提高了VLA模型的可靠性和概括。此外,在协作期间收集的操纵数据可以进一步完善VLA模型,而人类参与者同时提高了他们的技能。这个双向学习循环增强了协作系统的整体性能。各种VLA模型的实验结果证明了所提出的系统在协作操作和学习中的有效性,这是通过跨任务的成功率提高的。此外,使用大脑计算机界面(BCI)验证表明,协作系统通过在操纵过程中涉及VLA模型来提高低速动作系统的效率。这些有希望的结果为在机器人技术基础模型时代推进人类机器人的互动铺平了道路。(项目网站:https://aoqunjin.github.io/expert-vla/)索引术语 - 人类 - 罗伯特协作;人为因素和人类因素;从演示中学习
最近的作品表明,使用蒙版自动编码器(MAE)在以自我为中心数据集上进行视觉预测可以改善下游机器人技术任务的概括[40,29]。但是,这些方法仅在2D图像上预处理,而许多机器人应用程序需要3D场景的理解。在这项工作中,我们提出了3D-MVP,这是一种使用蒙版自动编码器进行3D多视图预处理的新方法。我们利用机器人视图变压器(RVT),该变压器(RVT)使用多视图变压器来理解3D场景并预测抓地力姿势动作。我们将RVT的多视图变压器拆分为视觉编码器和动作解码器,并在大规模3D数据集(例如Objaverse)上使用蒙版自动编码预处理其视觉编码器。我们在一组虚拟机器人操纵任务上评估了3D-MVP,并证明了基准的性能提高。我们还在真正的机器人平台上显示出令人鼓舞的结果,并具有最小的填充。我们的结果表明,3D感知预处理是提高样品效率和基于视觉机器人操纵策略的概括的有前途的方法。我们将发布3D-MVP的代码和预估计的模型,以促进未来的研究。
强化学习 (RL) 在实现机器人自主习得复杂操作技能方面前景广阔,但在现实环境中实现这一潜力却充满挑战。我们提出了一个基于视觉的人机协同强化学习系统,该系统在一系列灵巧操作任务中展现出令人印象深刻的性能,包括动态操作、精密装配和双臂协调。我们的方法融合了演示和人工校正、高效的强化学习算法以及其他系统级设计选择,旨在学习在短短 1 到 2.5 小时的训练时间内即可实现近乎完美的成功率和快速循环时间的策略。我们证明,我们的方法显著优于模仿学习基线和先前的强化学习方法,平均成功率提高了 2 倍,执行速度提高了 1.8 倍。通过大量的实验和分析,我们深入了解了该方法的有效性,展示了它如何为反应式和预测式控制策略学习稳健且自适应的策略。我们的结果表明,强化学习确实能够在实际训练时间内直接在现实世界中学习各种基于视觉的复杂操作策略。我们希望这项工作能够激发新一代学习型机器人操作技术,促进工业应用和研究进步。视频和代码可在我们的项目网站 https://hil-serl.github.io/ 获取。