一位名叫 HM 的著名患者让海马体的重要性得到了深刻的体现。作为癫痫手术的一部分,医生切除了他大部分的内侧颞叶。自 1953 年那次手术以来,他没有形成任何新的记忆。他能记得童年和手术前的一切,他仍然有工作记忆和形成程序记忆的能力。你可以和他进行正常、清晰的对话,但如果你离开房间片刻,当你回来时,他不会记得你或对话。他完全失去了形成陈述性记忆的能力。
各种方法开发了3D综合的深度神经网络架构[Chaudhuri等。2020; Patil等。2020; Shi等。2023; Xu等。2023]。尽管这些方法可以捕获各种宏观的外观,但它们很少明确地模型形状的结构或拓扑结构,而是依靠网络的代表力来生成可见的看起来可见的体素电网[Liu等。2017],点云[Achlioptas等。2018a],网格[Dai和Nießner2019]或隐式领域[Chen and Zhang 2019]。与2D图像生成网络相比,由于3D网络被额外维度所带来的其他资源开销所阻碍,因此它们通常很难建模精细的细节和连接性。某些方法模型零件布局[Li等。2017],但在它们可以产生的结构的复杂性上受到限制。同时,这些先前的3D合成方法很少使艺术家灵活,精确地控制。它们更充当非有条件生成的黑匣子,或者通过图像或3D扫描重建。最新方法基于文本提示引入合成[Lin等。2023; Poole等。2023],取得了显着的结果,但仅通过及时工程进行全球控制。3D角色艺术家长期以来一直习惯于摆姿势钻机以进行准确的角色配置。然而,这种直接的局部控制和通过直观的抽象的可解释性在一般3D形状合成中的成功限制。背面有特定板条配置的椅子。没有明确结构建模的方法缺乏指定特定所需拓扑的能力,例如另一方面,进行模型零件级结构的方法仅限于由一些粗制的拓扑定义的简单拓扑结构,并且无法对复杂的FRETWORK或装饰进行建模。我们对现实的3D形状生成感兴趣,该生成能够准确地模拟复杂的拓扑和几何细节,并支持对形状结构和几何形状的更可解释的控制。为实现这一目标,我们基于三个关键见解:(1)拓扑细节通常可以在“骨骼抽象”中捕获,就像内侧轴变换获得的那样[Tagliasacacchi等。2016],即使没有有意义的部分分解,它也可以作为形状的简化结构代理。 (2)这些抽象可以通过生成方法合成[Karras等。2022],由稀疏点云预测[Nie等。2020; Yin等。2018],或由艺术家手动创建,而不必是完美的,因为它们是模仿中间表示; (3)每个抽象可以通过另一个训练有素的模型将每个抽象解码为逼真的表面。我们的方法通过推出并组装了以骨骼抽象为条件的局部支持的神经隐式功能来实现表面生成步骤。我们从该领域的最新工作中汲取了证明,该研究将潜在代码与稀疏集中的每个3D点相关联,并从潜在网格中生成局部隐含[Zhang等。2022]。但是,先前工作中稀疏的点支持集往往是任意的,而不是很容易解释。与单个大隐含物相比,这些不合格的混合物定义了整体合成形状,并可以更好地生成细微的几何细节。基于3D神经场和跨注意的后续工作[Zhang等。2023]完全在潜在网格上滴显式空间接地。相比之下,我们的基于骨架的潜在网格更具结构感知,为3D空间中的潜在代码提供了可解释的支持,同时仍然能够代表复杂的,细粒度的拓扑结构。我们总结了我们的贡献如下:
abtract:神经成像研究的最后十年产生了有关杏仁核,内侧前额叶皮层和海马在流经后压力障碍(PTSD)中的结构,神经化学和功能的重要信息。神经影像学研究表明,在症状状态和处理创伤无关的情感信息期间,PTSD的杏仁核反应性升高。重要的是,杏仁核反应性与PTSD的症状严重程度呈正相关。相比之下,内侧前额叶皮层似乎较小,并且在症状状态下是反应不足,并且在PTSD中的情绪认知任务的表现。内侧前额叶皮层反应性与PTSD症状严重程度成反比。最后,回顾的研究表明,PTSD中海马的体积,神经元完整性和功能完整性的减少。提出了其余的研究问题和相关的未来方向。
结果:(1)在局部大脑连接组中,整个网络特征表现出低特征路径长度,并配对中度至高全球效率,这表明局部脑连接组构建的有效性。杏仁核连接组表现出比同侧海马和帕拉希公接连接组显示更长的特征路径长度和更弱的全球效率。(2)杏仁核连接组的轮毂分散在腹侧额叶,嗅觉区域,边缘,顶部,顶部区域和皮层下核,以及枢轴的海马连接组主要位于山缘,皮层和皮层下区域内。帕拉希公接连接组的轮毂分布类似于海马结构连接组,但缺乏半球间连接以及与皮层核的连通性。(3)每个ROI的大脑局部结构连接组的亚型通过层次聚类进行分类,双侧杏仁核连接组的亚型是杏仁核 - 前额叶连接组;杏仁核 - 外侧或对侧边缘连接组和杏仁核 - 伴随连接组。双侧海马连接组的亚型主要包括域半球中的海马冲向或对侧边缘连接组和前颞张 - 海马 - 腹部颞叶枕骨。parahampocampal连接组的亚型与海马的亚型表现出相似之处。
为了获得个性化治疗的先验标记,反复试验法通常用于药物或其他抗抑郁治疗(5)。经颅磁刺激(TMS)是一种安全且耐受性良好的干预措施,已被广泛研究用于治疗重度抑郁症(MDD),有超过 150 项随机对照试验(RCT),并在许多荟萃分析中证实了其疗效(6)。值得注意的是,针对外侧前额叶皮质(LPFC)的 TMS 被认为是治疗难治性抑郁症的一种选择,使用 8 字形线圈的传统 TMS 和使用 H1 线圈协议的深部 TMS 均在大型多中心 RCT 之后获得 FDA 批准(7, 8)。经过这些治疗,25%–35% 的药物难治性抑郁症患者病情缓解(大部分无症状),另外 15%–25% 的患者有反应(症状减少超过 50%)(6)。同样,个性化医疗的先验标记尚未确定,而既定的 LPFC 刺激治疗模式可能无意中分散了对寻找替代有效靶点的注意力(9)。LPFC 只是在有效神经刺激治疗抑郁症的常见脑回路中确定的靶点之一(10),不同的靶点可能对治疗患有不同亚综合征(11)的患者更有效,这些亚综合征对应于不同的大脑活动功能障碍模式(4)。因此,针对其他大脑区域的刺激方案可能对某些患者有益。最近,内侧前额叶皮质(MPFC)以及前扣带皮层(ACC)被认为是深部 TMS 治疗 MDD 的有希望的替代靶点,因为它们与奖励、情绪、心情和习惯有关(9、12、13)。已知 ACC 有直接兴奋性谷氨酸能投射到腹侧纹状体,最近的一项研究发现,奖赏相关的 MPFC-纹状体连接与抑郁症状严重程度增加之间存在负相关性 (14) 。此外,与健康对照组相比,MPFC 和 ACC 是 MDD 患者灰质减少最一致的区域 (15) 。几项未包括假对照组的研究获得了刺激 MPFC 疗效的初步证据 (16–19) 。在这些研究中,总共 482 名 MDD 患者接受了 D-B80 线圈(一种有角度的 8 字形线圈)的传统 TMS 治疗,加权平均反应率和缓解率分别为 41.4% 和 31.5%。一项假刺激对照研究 (20) 发现,在治疗结束时(第 3 周),D-B80 线圈 (n = 13) 的效果显著优于 8 字形线圈 (n = 15),但 D-B80 与假刺激 (n = 12) 相比没有显著效果。此外,深部 TMS H7 线圈的目标是 MPFC 和 ACC,与 D-B80 线圈相比,它刺激的脑容量明显更深、更广 (21)。虽然 H7 线圈主要用于治疗强迫症 (OCD) (22),但最近的初步结果表明,它也可对深部 TMS H1 线圈治疗失败的 MDD 患者产生显著的抗抑郁作用 (23)。
终纹床核 (BNST) 的前部调节恐惧和压力反应。前背 BNST (adBNST) 在解剖学上可进一步细分为外侧和内侧部分。尽管已经研究了 BNST 亚区的输出投影,但对这些亚区的局部和全局输入连接仍然知之甚少。为了进一步了解以 BNST 为中心的电路操作,我们应用了新的病毒遗传追踪和功能电路映射来确定小鼠 adBNST 外侧和内侧亚区的详细突触电路输入。在 adBNST 亚区注射了单突触犬腺病毒 2 型 (CAV2) 和狂犬病毒逆行示踪剂。杏仁核复合体、下丘脑和海马结构占 adBNST 总体输入的大部分。然而,外侧和内侧 adBNST 亚区具有不同的长距离皮质和边缘大脑输入模式。外侧 adBNST 具有更多来自前额叶(前边缘、下边缘、扣带回)和岛叶皮质、前丘脑和外嗅皮层/外嗅皮层的输入连接。相比之下,内侧 adBNST 接收来自内侧杏仁核、外侧隔膜、下丘脑核和腹侧下托的偏向输入。我们使用 ChR2 辅助电路映射确认了从杏仁海马区和基底外侧杏仁核到 adBNST 的长距离功能输入。选定的新型 BNST 输入还通过来自艾伦研究所小鼠脑连接图谱的 AAV 轴突追踪数据进行了验证。总之,这些结果提供了外侧和内侧 adBNST 亚区差异传入输入的全面图谱,并为 BNST 电路对压力和焦虑相关行为的功能操作提供了新的见解。
结果:研究中包括16名患者(15名女性,1名男性),平均年龄为32岁(范围:17-38岁)。所有患者的随访期至少为3个月,平均随访为7个月。患者满意度评估表明,有13名患者非常满意,3例患者感到满意,并且没有不满意的病例。所有患者的泪突出程度均降低,肩thal骨的形状是自然的,双侧眼睑裂缝的大小合适,并且平行双眼眼睑转化为扇形双眼眼睑。切口疤痕的外观并不突出,线条平滑。canthal距离的增加范围为3毫米,ICD伸长率范围从9.09%到28.30%。术前测量的癌间距离范围为28至35.0mm,平均为31.25±2.32mm,术后测量为35.19±2.26mm。差异具有统计学意义(t = -4.793,p <0.001)。眼睛运动没有紧急或不适感,结果令人满意。
尽管有希望取得的进步,但耐药性癫痫(DRE)的闭环神经刺激仍然依赖手动调整并产生可变的结果,而自动化的可预测算法仍然是一种吸引力。作为解决这一差距的基本步骤,在这里,我们研究了在参数丰富的神经刺激下人类颅内EEG(IEEG)反应的预测动力学模型。使用来自n = 13例DRE患者的数据,我们发现具有约300毫秒因果历史依赖性的刺激触发的切换线性模型可以最好地解释引起的IEEG动力学。这些模型在不同的刺激幅度和频率中高度一致,从而可以从丰富的刺激下学习可推广的模型,并且对数据有限。此外,几乎所有受试者的IEEG都表现出距离依赖的模式,从而刺激直接影响致动位点和附近地区(≲20mm),会影响中距离区域(20〜100mm)通过网络相互作用,几乎无法达到远端区域(≳100mm)。峰网络相互作用发生在距刺激位点60毫米的60毫米处。由于其预测精度和机械性解释性,这些模型对于基于模型的癫痫发作和闭环神经刺激设计具有巨大的潜力。
尽管十多年来取得了令人鼓舞的成果,但用于治疗药物难治性癫痫 (DRE) 的闭环神经刺激仍然依赖于手动参数调整,并且会产生不可预测的变化结果,而全自动算法仍然只是理论上的可能性。在这项工作中,我们研究了在参数丰富的神经刺激下人类颅内脑电图 (iEEG) 反应的预测动力学模型,并开发了预测准确且生物学上可解释的模型。使用来自 n = 13 名受试者的数据,我们表明,诱发的 iEEG 动态最好通过具有约 300 毫秒的因果历史依赖性的刺激触发切换线性模型来解释。这些模型在刺激幅度和频率(包括 STIM OFF 持续时间)方面高度一致,这使得可以从丰富的 STIM OFF 和有限的 STIM ON 数据中学习单个可推广的模型。在受试者中,我们观察到一致的距离依赖模式,即刺激直接影响驱动点和附近区域(≲ 20 毫米),几乎没有或根本没有网络介导,通过网络交互间接到达中距离区域(20 ∼ 100 毫米),几乎无法到达更远端区域(≳ 100 毫米)。网络交互的峰值参与发生在距离刺激点约 60-80 毫米处。由于其预测准确性和机制可解释性,这些模型在基于模型的癫痫发作预测和闭环神经刺激的刺激设计中具有深远的应用。
计划的能力是称为“执行职能”的认知技能集的重要组成部分。能够事先计划行动在日常生活中至关重要,并且构成了学术和经济成功的主要主要特征之一。本研究旨在通过前额叶皮层的皮质厚度来研究正常发育儿童计划的神经解剖学相关性。18个健康的儿童和青少年进行了结构性MRI检查和伦敦塔(TOL)任务。多重回归分析表明,右尾部额叶回旋(CMFG)的皮质厚度是计划性能的重要预测指标。任何其他前额叶区域的皮质厚度均未与TOL任务的表现显着相关。本探索性研究的结果表明,右侧的皮质厚度(而不是左CMFG)与TOL任务中的性能呈正相关。因此,我们得出的结论是,增加的皮质厚度可能对诸如信息整合的高阶过程更有益,而不是对诸如外部信息分析之类的低阶过程。