虽然细胞外基质(ECM)应力松弛受到调节干细胞命运的承诺和其他行为的越来越多,但对于细胞如何处理类似组织样的三维(3D)几何形状与传统2D细胞培养的细胞处理应力 - 浮肿线索如何处理应力释放线索。在这里,我们开发了基于透明质酸的ECM平台的寡核苷酸交联,具有可调应力松弛特性,可在2D或3D中使用。引人注目的是,应力松弛有利于3D中的神经干细胞(NSC)神经发生,但在2D中抑制它。RNA测序和功能研究将与膜相关的蛋白质谱一起作为应力 - 浮肿提示的关键3D特异性跨透明剂。将应力限制在F-actin cytoskeleton上,将Spectrin的募集驱动到机械上加强皮层并增强机械转导信号传导。增加的谱素表达还伴随着转录因子EGR1的表达增加,我们先前在3D中显示了NSC刚度依赖性谱系识别的介导。我们的工作将光谱作为3D应力 - 释放提示的重要含量传感器和传感器。
对环境施加灵活的工具控制的能力是适应性决策的决定性特征。在这里,我们研究了调节对具有更大工具分歧的环境的偏好的神经基础,工具分歧是与替代行动相关的结果概率分布之间的距离。作为代理的正式指标,工具分歧允许有机体随着偏好的变化灵活地获得当前最期望的结果。因此,它可能具有内在效用,引导决策走向最大化工具力量的环境。与此观点一致,我们发现,将工具分歧视为奖励替代品的预期价值测量比仅对金钱奖励敏感的传统模型更好地解释了男性和女性人类参与者的选择偏好。使用基于模型的 fMRI,我们发现前额外侧和腹内侧 PFC 中的活动(分别与抽象认知推理和主观价值计算相关)随基于分歧的预期价值解释而缩放。讨论了信息理论和动机变量的神经共同货币的含义。
泛素化与DNA双链断裂的识别和修复至关重要。衔接蛋白MDC1介导关键DNA损伤反应E3泛素连接酶RNF8的募集到断裂位点。它是通过涉及RNF8 FHA结构域的磷酸化依赖性方式直接与RNF8相互作用的,从而在休息位点启动了靶向的染色质Ubiq-脉络性。在这里,我们报告MDC1还直接与另外两个E3泛素连接酶,佩里诺1和2结合,这些连接酶最近与DNA损伤响应有关。通过生化,生物物理和X射线晶体学方法的结合,我们揭示了MDC1-Pellino复合物的分子细节。此外,我们表明,在哺乳动物细胞中,MDC1通过两种蛋白质之间的直接磷酸化相互作用介导了佩里诺募集到DNA双链断裂的位点。总的来说,我们的发现为控制基因组稳定性维持的泛素化途径提供了新的分子见解。
在触摸受体,胶质细胞和辅助细胞中起关键作用。然而,这种调节的基础机制知之甚少。我们首次表明,在秀丽隐杆线虫鼻触摸受体的神经胶质中需要氯化物通道CLH-1,以进行触摸反应和调节兴奋性。使用体内Ca 2+和Cl-成像,行为测定以及遗传和药理操作的组合,我们表明CLH-1介导了胶质GABA抑制灰分感官神经元功能以及用于调节灰神经元cAMP水平的CL-通量。最后,我们表明大鼠CLC-2通道挽救了CLH-1的鼻子触摸不敏感的表型,强调了整个物种功能的保护。我们的工作将神经胶质Cl-通道视为触摸灵敏度的新型调节剂。我们提出,Glial CLH-1调节Ca 2+与Ash神经元中CAMP信号之间的相互作用,以控制蠕虫的鼻子触摸受体的灵敏度。
在第一个减数分裂细胞分裂中摘要,大多数生物体的染色体的适当分离取决于chiasmata,这是源自spo11核酸酶催化的编程双链断裂(DSB)的同源染色体之间的连续性交换。由于DSB会导致生殖细胞无法弥补的损害,而缺乏DSB的染色体也缺乏Chiasmata,因此必须仔细调节DSB的数量既不会太高也不太低。在这里,我们表明,在秀丽隐杆线虫中,减数分裂DSB水平受DSB-1的磷酸调节控制,DSB-1是PP4 PPH-4.1磷酸酶和ATR ATL-1 Kinase的相对活性,DSB-1(酵母SPO11辅助剂REC114)的同源物。PPH-4.1突变体中DSB-1磷酸化的增加与DSB形成的减少相关,而DSB-1磷酸化的预防大大增加了PPH-4.1突变体和野生型背景中的减数分裂DSB的数量。秀丽隐杆线虫及其近亲还具有DSB-1的差异旁系同源物,称为DSB-2,而DSB-2的丢失却可以减少年龄增加的卵母细胞中的DSB形成。我们表明,DSB-1的哲学和灭活形式的比例随着年龄的增长和DSB-2的流失而增加,而不可磷酸化的DSB-1则挽救了DSB-2突变体中DSB的年龄依赖性降低。这些结果表明,DSB-2部分进化以补偿DSB-1通过磷酸化的失活,以维持老年动物的DSB水平。我们的工作表明,PP4 PPH-4.1,ATR ATL-1和DSB-2与DSB-1协同作用,以在整个生殖寿命中促进最佳DSB水平。
pseudomonas stutzeri rch2 pseudomonas sp。WCS358假单胞菌sp。ch409 syringae dc3000假单胞菌syringae es4326假单胞菌fuscovaginae irri 6609 pseudomonas fuscovaginae fuscovaginae se-1 pseudomonas psseudomonas protegens Protegens Pf-5 pseudomonas sp。pb100 pseudomonas sp。pb105 pseudomonas simiae wcs417 pseudomonas sp。WCS374假单胞菌sp。N2E3假单胞菌sp。CH267假单胞菌sp。 CH235荧光菌群PF0-1假单胞菌sp。 CH229假单胞菌sp。 PB103 Pseudomonas sp pb106 pseudomonas vancouverensis dha51 pseudomonas sp.gw456-l13 pseudomonas sp。 PB101假单胞菌sp。 UW4假单胞菌sp。 PB120假单胞菌sp。 N1B4假单胞菌DF41假单胞菌伪虫sp。 N2C3假单胞菌sp。 N2E2假单胞菌sp。 WCS365假单胞菌NFM421铜绿假单胞菌PA14 PSEUDOMONAS铜绿假单胞菌PAO1 pseudomonas eruginosa eruginosa lesb58CH267假单胞菌sp。CH235荧光菌群PF0-1假单胞菌sp。CH229假单胞菌sp。 PB103 Pseudomonas sp pb106 pseudomonas vancouverensis dha51 pseudomonas sp.gw456-l13 pseudomonas sp。 PB101假单胞菌sp。 UW4假单胞菌sp。 PB120假单胞菌sp。 N1B4假单胞菌DF41假单胞菌伪虫sp。 N2C3假单胞菌sp。 N2E2假单胞菌sp。 WCS365假单胞菌NFM421铜绿假单胞菌PA14 PSEUDOMONAS铜绿假单胞菌PAO1 pseudomonas eruginosa eruginosa lesb58CH229假单胞菌sp。PB103 Pseudomonas sp pb106 pseudomonas vancouverensis dha51 pseudomonas sp.gw456-l13 pseudomonas sp。PB101假单胞菌sp。UW4假单胞菌sp。PB120假单胞菌sp。N1B4假单胞菌DF41假单胞菌伪虫sp。N2C3假单胞菌sp。 N2E2假单胞菌sp。 WCS365假单胞菌NFM421铜绿假单胞菌PA14 PSEUDOMONAS铜绿假单胞菌PAO1 pseudomonas eruginosa eruginosa lesb58N2C3假单胞菌sp。N2E2假单胞菌sp。 WCS365假单胞菌NFM421铜绿假单胞菌PA14 PSEUDOMONAS铜绿假单胞菌PAO1 pseudomonas eruginosa eruginosa lesb58N2E2假单胞菌sp。WCS365假单胞菌NFM421铜绿假单胞菌PA14 PSEUDOMONAS铜绿假单胞菌PAO1 pseudomonas eruginosa eruginosa lesb58
钩虫感染影响全球数百万人,导致营养不良和贫血等慢性疾病。在钩虫物种中,锡兰钩虫是一种普遍存在的物种,能够感染各种宿主,包括人类、猫、狗和仓鼠。令人惊讶的是,尽管小鼠与仓鼠有密切的系统发育关系,但它却无法在小鼠体内建立。本研究调查了锡兰钩虫在免疫缺陷 NSG 小鼠中的发育情况,以确定免疫系统对宿主限制的贡献。感染在感染后第 19 天 (PI) 开始,并表现出产卵量增加,这种现象至少持续了 PI 160 天。从受感染 NSG 小鼠释放的卵中饲养的感染性锡兰钩虫幼虫对仓鼠具有传染性,并且能够繁殖,这表明 NSG 小鼠中的成年小鼠正在产生可存活的后代。相比之下,锡兰钩虫在杂交瑞士韦伯斯特小鼠中发育有限。此外,与犬钩虫密切相关的犬钩虫无法感染 NSG 小鼠并在其体内发育,这表明即使在密切相关的物种中,不同的机制也可能决定宿主特异性。这是首次报道任何钩虫物种在小鼠体内完成其生命周期,并表明免疫系统在决定 A. ceylanicum 的宿主特异性方面起着重要作用。
。CC-BY 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2025 年 2 月 3 日发布了此版本。;https://doi.org/10.1101/2024.11.13.623343 doi:bioRxiv 预印本
中国香港水湾的香港科学技术大学生命科学师; B分子神经科学中心,香港科学技术大学,清水湾,香港,中国; c国家科学技术大学分子神经科学的关键实验室,中国香港清水湾;香港神经退行性疾病中心,中国香港; e香港科学技术大学电子和计算机工程系,中国香港清水湾; F系统生物学与人类健康中心,香港科学技术大学,清水湾,香港,中国; G中国香港中文大学医学院生物医学科学学院,中国香港; H Gerald Choa神经科学中心,香港中国大学,香港,中国香港;我是广东省脑科学,疾病和药物开发的省级主要实验室,深圳研究所,深圳 - 香港脑科学研究所,518057,中国广东,
抽象的碳酸酐酶12被认为是癌细胞中的致癌和酸性微环境因子。为了验证组胺信号作为抗癌信号的作用,我们确定了CA12及其相关的碳酸氢盐转运蛋白的作用。在这项研究中,组胺刺激介导了CA12在肺癌细胞中的错误定位。组胺受体激活介导的Ca12内吞作用和pH值通过CAMKII抑制恢复。CA12相关的AE2表达增强了,而NBCN1表达及其活性通过组胺刺激降低。组胺受体激活介导的酸化是通过内部化的CA12和NBCN1诱导的,同时通过增强的AE2表达来增加碳酸氢盐外排。抑制bafilomycin对蛋白质运输的抑制作用恢复了Ca12和AE2局部性,并减少了细胞酸中毒。因此,我们验证了组胺刺激诱导的酸性场景 - 揭示了CA12及其相关的碳酸氢盐转运蛋白在肺癌细胞中的运输及其相关的碳酸氢盐转运蛋白及其失调的pH调节可能与组胺信号信号介导的介导的抗癌抗癌过程有关。