神经营养受体参与了脑发育和神经塑性的调节,因此可以作为抗癌和中风恢复药物,抗抑郁药等的靶标。需要阐明各种状态下TRK蛋白结构域在各种状态下的结构,以允许合理的药物设计。然而,关于trk受体的跨膜和叶膜结构域的构象知之甚少。在本研究中,我们采用NMR光谱来解决脂质环境中TRKB二聚体跨膜结构域的结构。我们使用诱变并确认该结构对应于受体的活性状态。随后研究TRKB与抗抑郁药氟西汀的相互作用和抗精神病药物氯丙嗪提供了一种明确的自谐模型,描述了氟西汀通过与其跨膜结构结合而激活受体的机制。
Flow 部门专门为客户的工艺提供专门设计的泵送解决方案。我们提供通过深入研究和开发流体动力学和先进材料而开发的泵、搅拌器、压缩机、研磨机、筛网和过滤器。我们是水、石油和天然气、电力、化学品和大多数工业领域泵送解决方案的市场领导者。
其天然膜中内源性蛋白质复合物的抽象成像可以揭示在洗涤剂溶解后损失的蛋白质 - 蛋白质相互作用。为了研究分枝杆菌氧化磷酸化机制中的相互作用,我们准备了来自smegmatis分枝杆菌的倒膜囊泡,并富含通过亲和力色谱含有兴趣复合物的囊泡。电子冷冻显微镜(冷冻-EM)表明,来自克雷布斯循环的酶(MQO)(MQO)与电子传输链复合物III 2 IV 2 IV 2(CIII 2 CIX 2)superComplex物理相关。对MQO:CIII 2 CIV 2相互作用的分析表明,CIII 2 CIV 2对于苹果酸驱动的,但不是NADH驱动的电子传输链活动和氧气消耗所必需的。此外,MQO与CIII 2 CIV 2的关联使电子从苹果酸到CIII 2 CIV 2与毫秒动力学转移。一起,这些发现表明了Krebs循环与呼吸之间的联系,该呼吸将电子沿着分枝杆菌电子传输链的单个分支引导。引言生物能是通过包括糖酵解,三羧酸或克雷布斯循环以及脂肪酸氧化的代谢途径从营养物质中提取的。在大多数生物体中,克雷布斯循环提供减少的烟酰胺腺苷二核苷酸(NADH),并琥珀酸酯添加到膜结合的电子传输链(ETC)配合物,以驱动跨膜质子质子运动力(PMF)的产生。PMF反过来为二磷酸腺苷(ADP)和无机磷酸盐(P I)合成三磷酸腺苷(ATP)提供了能量。nadh被ETC的复合物I氧化,将泛氨基酮降低为泛醇。在克雷布斯循环中,琥珀酸酯氧化为富马酸盐是必不可少的反应,但通过ETC的复合物II发生,这也将泛氨基酮降低到泛醇。然后将来自泛醇的电子依次转移至复合物III,细胞色素C(Cyt。c),复合物IV,然后氧气将其减少到水中。复合物I,III和IV对夫妇电子在整个膜上转移至质子易位,维持了为ATP合成的PMF。分枝杆菌等与典型的哺乳动物线粒体等不同的方式(在(Liang and Rubinstein,2023)中进行了多种方式)。首先,分枝杆菌等依赖于甲酸苯丙胺(MQ),而不是泛氨基酮。此外,与规范的etc,分枝杆菌等不同。在大多数分枝杆菌中,例如病原体分枝杆菌结核病和快速生长的腐生肉芽菌分枝杆菌Smegmatis,NADH:MQ氧化还原酶活性均由复合物I和一种或多种非腐蚀性泵送II型NADH脱氢酶(NDH-2S)催化。两种不同的酶SDH1和SDH2催化琥珀酸酯:MQ氧化还原酶活性。此外,结核分枝杆菌和Smegmatis均具有苹果酸:奎因酮氧化还原酶(MQO),将氧化剂氧化为Oxalo乙酸盐,这是KREBS循环的关键步骤,而将MQ降低到MQH 2(Harold等,202222)。在结核分枝杆菌中,除了苹果酸脱氢酶(MDH)之外,还发现了该MQO,它将电子从苹果酸转移到NAD +,而在Smegmatis M. smegmatis MQO中是唯一的苹果酸氧化酶(Harold等,2022)。c。也许最引人注目的是,分枝杆菌中MQH 2的氧化是由复合物III和IV(CIII 2 CIV 2)的超复合物催化的,并具有结合的细胞色素CC亚基,代替了可溶性细胞。MQH 2的氧化和将氧气还原为水还可以通过细胞色素BD复合物(在规范等中未发现)来实现,每种电子转移的质子比CIII 2 Civ 2易解的质子较少(Safiarian等,2021年)。
在植物中,NLR(核苷酸结合域和富含亮氨酸重复序列)蛋白通过形成聚集在质膜上的抗性小体来执行先天免疫。然而,NLR 抗性小体靶向其他细胞膜的程度尚不清楚。在这里,我们表明辅助 NLR NRG1 与多个细胞器膜结合以触发先天免疫。与其他辅助 NLR 相比,NRG1 和密切相关的 RPW8 样 NLR(CC R -NLR)具有延长的 N 端和独特的序列特征,使它们能够组装成比典型的卷曲螺旋 NLR(CC-NLR)抗性小体更长的结构。活化的 NRG1 通过其 N 端 RPW8 样结构域与单膜和双膜细胞器结合。我们的研究结果表明,植物 NLR 抗性小体在各种细胞膜位点聚集以激活免疫。
壳聚糖涂层,源自甲壳类动物壳废物,具有固有的生物相容性和生物降解性,使它们适合各种生物医学和环境应用,包括电化学生物透镜。其胺和羟基官能团为化学修饰提供了丰富的位点,以增强电荷转移动力学并提供出色的粘附,从而实现了稳健的电极涂层接口进行电分析。本研究探讨了静电驱动的化学相互作用和交联密度的作用,该密度源自不同壳聚糖(CS)和戊二醛(GA)浓度在这方面的作用。研究阴离子([Fe(CN)6] 3 - /4-),中性(FCDM 0 / +)和阳离子([RU(NH 3)6] 2 + /3 +)氧化还原探针突显了通过含有正气收费路径的壳聚糖链与Dft分析计算的壳聚糖链与壳聚糖链的影响。我们的研究揭示了适当的CH与GA比如何对交叉连接功效和结果电荷转移动力学具有较大的影响,这主要是由于电触电驱动的,这是由于电动驱动的负电荷的亚烯酰胺离子朝向带阳性充电的阳性电荷载荷的外壳粒的迁移而促进了多达20倍分析的预浓度。值得注意的是,表面工程方法允许[Fe(CN)6] 4-检测限制的两个数量级增强,从裸机的0.1 µm到适当的水凝胶修饰后,裸露的GCE降至0.2 nm。
电穿孔会导致细胞膜通透性暂时增加,并导致兴奋细胞和非兴奋细胞的跨膜电压 (TMV) 发生长时间变化。然而,这些 TMV 变化的机制仍有待完全阐明。为此,我们使用 FLIPR 膜电位染料将两种不同的细胞系暴露于单个 100 µ s 电穿孔脉冲后,在 30 分钟内监测 TMV。在表达极低水平内源性离子通道的 CHO-K1 细胞中,脉冲暴露后的膜去极化可以用非选择性漏电流来解释,这种漏电流一直持续到膜重新密封,使细胞能够恢复其静止的 TMV。在表达多种不同离子通道的 U-87 MG 细胞中,我们意外地观察到初始去极化阶段之后的膜超极化,但仅在 33 ◦ C 时发生,而在 25 ◦ C 时未发生。我们开发了一个理论模型,该模型得到了离子通道抑制剂实验的支持,该模型表明超极化在很大程度上可归因于钙激活钾通道的激活。离子通道激活与 TMV 和细胞内钙的变化相结合,参与各种生理过程,包括细胞增殖、分化、迁移和凋亡。因此,我们的研究表明离子通道可能是影响电穿孔后生物反应的潜在靶点。
带有2D材料的膜表面涂层已显示出用于水处理应用的防婚特性。但是,目前基于真空过滤的合成方法不容易缩放。本研究描述了一种可扩展的方法,可用于涂层膜,包括氧化石墨烯(GO),六边形硝酸氢硼(HBN),二硫化钼(MOS 2)和二硫化钨(WS 2)。使用含氧剂将含有每类2D薄片的异丙基醇溶液喷涂到商业聚偏氟化物(PVDF)上。纳米材料用聚多巴胺(PDA)作为一个可以轻松地集成到可扩展的滚动过程中的方法中的交联。使用扫描电子显微镜,原子力显微镜,接触角,拉伸强度测量和傅立叶转换红外光谱法评估了形态,表面粗糙度,疏水性,机械耐用性和化学组成的变化。在72 h的膜蒸馏(MD)实验中测试了2D纳米材料涂层的膜,并将其与原始的PVDF和PDA/PVDF膜进行了比较。使用高浓度的腐殖酸(150 ppm)和石蜡油(200 ppm)的盐排斥和MD性能稳定性评估,从而模拟了从油气萃取中模拟简单的有机废水。通量下降比以每小时渗透率损失百分比(%/h)来衡量,以便将来与不同的实验时间进行比较。所有膜的盐分排斥很高(> 99.9%)。原始的PVDF膜在10小时后因结垢而导致孔隙润湿失败,而PDA/PVDF膜的通量下降率最大(0.3%/小时)。涂有GO和HBN的膜的通量下降比较低(分别为0.0021±0.005和0.028±0.01%/h)。Go涂层的膜是唯一能够治疗含有表面活性剂和含有污垢的饲料的膜类型。改进的性能归因于表面粗糙度和疏水性的降低,这降低了污垢表面上的污垢吸附。这项工作显示了一种可延展的可扩展方法来克服MD中的犯规限制。
通过氧化石墨烯膜(GOM)的水转运,并且已经广泛研究了无机和有机溶质的排斥。然而,GO薄片的横向大小对膜性能的影响尚不清楚。在这里,我们研究了使用各种尺寸的薄片制造的GOM的水渗透和分离性能。用较大的薄片制备的膜显示出更高的水通量。我们的实验清楚地表明,GOM由薄片和空隙结构组成。蒙特卡洛模拟表明,通过空隙的水运输比通过GO膜中的薄片快于薄片。此外,对于用更大尺寸的Go片制备的膜而言,空隙更为主导,因此,对于较大的薄片膜而言,较高的水通量。此外,用大薄片制备的GOM有效地拒绝了98%以上的Geosmin(GSM)和2-甲基异位酚(MIB),具有高可重现性,稳定的水通量为1.49 LMH。我们的结果有助于更好地理解GOM的复杂结构,其中膜的排斥性能主要取决于层间空间,但水的运输受空隙的控制。我们的研究还证明了GOM在饮用水净化技术中的工业潜力。
吉西他滨 (GEM) 辅助全身化疗被公认为改善切除术后胰腺癌 (PC) 患者预后的标准治疗方法;然而,化疗药物吸收不良极大地限制了该方法的应用。此外,手术部位感染和伽马变形菌诱导的 GEM 耐药性进一步降低了化疗效果并增加了复发甚至死亡的风险。在此,我们开发了一种可植入的抗菌和抗癌纤维膜 (AAFM),以良好协调的方式抑制 PC 复发。我们的 AAFM 可以通过 GEM 和聚-L-乳酸 (PLLA) 的简单共电纺丝以及随后的单宁酸 (TA) 介导的银纳米粒子 (AgNPs) 的原位生成来轻松制备。所得膜具有高度多孔的纤维形态和适当的机械性能。最重要的是,我们发现表面沉积的TA / AgNP复合物可以发挥多种治疗作用:(1)它们可以充当围栏以延长GEM扩散路线,实现持续药物释放;(2)它们可以对抗局部微环境中的病原微生物,预防感染并发症并减轻Gammaproteobacteria诱导的化疗耐药性;(3)它们可以对抗残留癌细胞,同步增强基于GEM的化疗效果。总之,我们的AAFM为增强治疗效果的综合抗癌和抗菌策略提供了概念验证,并将启发设计其他用于预防肿瘤复发的高性能植入物。
质膜 H + -ATPases (PMA) 通过消耗 ATP 将 H + 从细胞质中泵出,从而产生膜电位和质子动力,以便营养物质跨膜转运进出植物细胞。PMA 通过调节根系生长、营养物质吸收和转运以及与丛枝菌根建立共生关系来参与营养物质的获取。在营养胁迫下,PMA 被激活以泵出更多的 H + 并促进有机阴离子排泄,从而提高根际营养物质的有效性。本文我们综述了 PMA 在植物有效获取和利用各种营养物质方面的生理功能和潜在分子机制的最新进展。我们还讨论了 PMA 在提高作物产量和品质方面的应用前景。