摘要:X 射线计算机断层扫描 (CT) 已成为检测金属增材制造 (MAM) 部件内部缺陷(如孔隙度、夹杂物、未熔合等)的首选无损检测 (NDT) 方法。此外,由于质量标准的建立以及制造系统、加工路线和检测手段的成熟,这种制造技术在航空航天领域的应用也日益广泛。例如,欧洲空间标准化合作组织制定了一项特定标准(由欧洲航天局 (ESA) 协调),用于 AM 质量保证、加工和空间应用要求 (ECSS-Q-ST-70-80C),表明应特别对关键结构和功能部件进行 CT 检查。同样,大型 OEM(原始设备制造商)也制定了自己的标准,将 CT 视为关键部件的强制性 NDT 方法,但其他技术(如渗透检测 (PT)、数字射线照相术 (DR) 或目视检查 (VI))也被认为是确保部件质量所必需的。本文介绍了硬件鉴定中不同 NDT 的各种应用示例:CHEOPS 太空任务的钛支架;PROBA3 的铝螺旋天线;JUpiter ICy 卫星探测器任务 (JUICE) 的铝支架;或其他航空部件,如 Clean Sky 2 IADP 演示器的铝整流罩和 RACER 直升机的结构钛襟翼配件。上述案例不仅将从检查的执行情况进行分析,还将从专门为 AM 开发或适应这种新型制造技术的不同标准和要求的应用进行分析。
近年来,大量量子比特(qubit)的制造和集成取得了重大进展,使量子计算机更接近现实,为研究人员、工程师和学生参与新兴的量子计算世界提供了新工具。结合各种可能的硬件平台和量子软件的共同进步,量子信息的远程传输演示正在为量子通信、量子存储器(互联网)和传感领域的革命性技术铺平道路。除了这个已经丰富的领域之外,新一代量子材料有望将拓扑物理与强相关性结合起来。这些材料与量子技术的结合推动了量子技术的前沿发展,并支持开发高能效的计算设备、先进的计量平台和拓扑量子量子比特,作为抗误差量子计算协议的替代方案。然而,开拓一个快速发展的领域意味着没有指南针前进,而 QUANTUMatter 的目的是在已知和未知领域提供方向,以推动进一步的探索而不迷失方向。 QUANTUMatter2023 为期三天,汇聚了来自世界各地(30 个国家)的 420 名参会者,期间除了全体会议外,还举办了重点主题(量子物质、量子信息理论等)的平行研讨会,以及为期一天的工业论坛。论坛由 Quantum Spain 组织举办,Quantum Spain 是一项国家倡议,重点致力于在西班牙发展量子计算生态系统 1 。如图 1 所示,会议吸引了众多参会者,并汇集了量子技术和量子材料领域的主旨演讲者和受邀演讲者的许多非常相关的贡献。会议以 Daniel Loss 教授 (巴塞尔大学,图 2) 关于用于量子计算的半导体自旋量子比特发展领域的精彩演讲开始,之后组织了一系列全体会议,涵盖各种量子比特平台(超导量子比特、可编程原子阵列)和材料(硅和锗基平面异质结构、混合半导体/超导体系统),重点关注它们的大规模集成 2 。会议广泛讨论了优化材料和界面设计以大规模集成高性能量子比特所面临的问题和挑战。讨论强调了这个快速发展的领域吸引具有不同背景和目标的研究人员和公司的缺点,即材料和器件的生长、特性和模拟之间缺乏系统的联系。建立量子技术的关键构件并确定可扩展量子信息处理的最有希望的途径对于加速进一步的进展至关重要。Mikhail Lukin 教授(美国哈佛大学)发表了精彩的全体会议演讲,介绍了利用可编程里德堡原子阵列探索新的科学前沿,包括使用量子优化解决最大独立集问题、强关联分子的量子模拟以及控制许多量子纠缠
引言启发式搜索是在大型状态空间中找到短路的常见方法,例如在最佳的古典计划中。最近提出的几项启发式方法使用合并框架(Dr'Ager,Finkbeiner和Podelski 2006; 2009; 2009; Helmert,Haslum和Hoffmann 2007; Helmert et al。2014),其中计划任务的原子抽象是逐渐组合的(合并了两个实体过渡系统)和简化的(缩小了一个差异过渡系统),直到剩下单个抽象为止,其目标距离然后诱导计划任务的启发性。在整个论文中,我们都对经典计划和合并和碎片框架进行了基本熟悉。由Sievers,Wehrle和Helmert(2014)提供了对合并框架最新探索的独立介绍。合并策略的合并策略的一个重要方面是确定在每个合并步骤中要组合的两个中间抽象。我们将使用以下术语:任务的合并策略由二进制树在任务的状态变量上定义。如果此树脱离列表,则称为策略,否则是非线性的(图1)。更普遍地说,当从文献中发表合并策略时,我们指的是(独立于领域的)算法,该算法为给定的计划任务生成合并策略。这样的al-gorithm被称为线性合并策略,并且仅当其产生的合并策略对于所有计划任务都是线性的。换句话说,非线性合并策略算法不是
本演示文稿包含有关SK Inc.和SK Inc.和SK Materials Co.,Ltd。(“公司”)的运营和业务结果的前瞻性陈述以及公司管理层管理的计划和目标。上述前瞻性陈述受未知风险,不确定性和其他因素的影响,这些风险可能会改变公司的实际结果或绩效。
*Eawag:瑞士联邦水生科学与技术研究所,瑞士。电子邮件地址:joaopaulo.leitao@eawag.ch **贝尔格莱德大学土木工程系,塞尔维亚贝尔格莱德。电子邮件地址:eprodano@hikom.grf.bg.ac.rs ***伦敦帝国理工学院土木与环境工程系,英国伦敦。电子邮件地址:c.maksimovic@imperial.ac.uk
Merge/Space (M/S) 是一个测试平台,它使用虚拟卫星网络模拟多代理安全场景。使用 M/S,研究人员可以探索移动卫星上的 DoS、扫描和渗透等攻击。USC-ISI 开发了 M/S 来评估卫星网络中较新的安全范式的使用。卫星系统正在从定制设计的小型星座过渡到大型商品硬件集合。这些系统运行在通用操作系统上,这些操作系统可能存在伴随的漏洞,例如最近记录的 FreeRTOS CVE-2021-31571 和 CVE-2021031572。在地面部分,亚马逊等地面站即服务 (GSaaS) 提供商的兴起增加了对天线的访问,也带来了敌对访问的风险。Hack-a-SAT 1 等竞赛为爱好者的攻击提供了概念证明。在这种转变发生的同时,卫星安全受到限制,限制了地面信息安全的能力。尤其:
点合并提供了一个框架,可减少飞机在接近繁忙机场时进入“传统”等待航线的要求。通过点合并到达机场标准到达路线 (STAR) 的飞机无需雷达引导,而是沿着中间定位点 (IF) 的圆形“序列弧”飞行,然后由空中交通管制员 (ATCO) 引导到 IF 开始仪表进近。这种设计通过帮助开发和维护 ATCO 态势感知、提高自动化程度和减少管制员工作量来支持人类操作员。此外,点合并操作的好处符合 SESAR 的目标,包括提高安全性、降低 ATM 成本和增加空域容量(SESAR 联盟,2009 年)。
‡ 通信地址:aashiq.kachroo@concordia.ca 关键词:基因组工程、CRISPR-Cas9、人源化酵母、蛋白酶体 缩写:CFU、菌落形成单位;DSB、双链断裂;HDR、同源定向 DNA 修复;HR、同源重组;CELECT、基于 CRISPR-Cas9 的选择以丰富基因型;MERGE、无标记富集和重组基因工程位点;SGA、合成遗传阵列
‡ 通信地址:aashiq.kachroo@concordia.ca 关键词:基因组工程、CRISPR-Cas9、人源化酵母、蛋白酶体 缩写:CFU、菌落形成单位;DSB、双链断裂;HDR、同源定向 DNA 修复;HR、同源重组;CELECT、基于 CRISPR-Cas9 的选择以丰富基因型;MERGE、无标记富集和重组基因工程位点;SGA、合成遗传阵列
1 克利夫兰诊所儿童医院,俄亥俄州克利夫兰市; 2 俄亥俄州克利夫兰市凯斯西储大学克利夫兰诊所勒纳医学院; 3 宾夕法尼亚州费城儿童医院胃肠病学、肝病学和营养科; 4 宾夕法尼亚大学佩雷尔曼医学院,宾夕法尼亚州费城; 5 加拿大安大略省多伦多儿童医院; 6 法国奥赛巴黎萨克雷大学医学院儿科肝病和肝移植科、胆道闭锁和遗传性胆汁淤积症 (AVB-CG) 参考中心、FSMR FILFOIE、ERN RARE LIVER、比塞特尔医院、AP-HP、勒克里姆林-比塞特尔和巴黎萨克雷大学 Hépatinov Inserm U1193; 7 英国伯明翰妇女儿童医院 NHS 信托和伯明翰大学肝脏科; 8 德克萨斯州休斯顿德克萨斯儿童医院; 9 Mirum Pharmaceuticals, Inc.,加利福尼亚州福斯特城