室内射频跟踪系统通常非常昂贵,并且由于干扰、设备质量或其他环境因素,其准确性可能会有所不同。由于这些技术限制因素,当今许多企业发现很难证明投资 RFID 跟踪技术来改善其工作环境的安全性、效率和保障是合理的。该项目的目的是提供一种经济实惠的 RFID 跟踪系统,该系统能够在室内环境中跟踪人或物体。为了最大限度地降低 RFID 跟踪系统的成本,系统的组件由现有的电子设备和硬件构建而成。该软件的编写也旨在最大限度地减少许可和支持费用,从而开发出具有成本效益的经济实惠的 RFID 跟踪系统。跟踪系统由标签、读取器节点和 PC 读取器组成,它们使用带有嵌入到芯片中的 Python 脚本的 Synapse RF 100 引擎。跟踪系统软件通过 Web 门户运行,利用 HTML、JavaScript 和 PHP 等 Web 技术,允许使用可缩放矢量图形在二维地图上表示标签位置。在系统开发过程中,我们开发了一种新的三边测量算法,并将从标签接收到的信号转换为与标签实际物理位置相关的地图上的虚拟位置。该系统的独特之处在于其建造成本低,我们估计不到 20 英镑
在本文中,我们介绍了一种新的几何深度学习模型 CorticalFlow,该模型通过给定一张三维图像来学习将参考模板变形为目标对象。为了保留模板网格的拓扑属性,我们通过一组微分同胚变换来训练我们的模型。这种新的流常微分方程 (ODE) 框架实现受益于小型 GPU 内存占用,可以生成具有数十万个顶点的曲面。为了减少由其离散分辨率引入的拓扑误差,我们推导出可改善预测三角网格流形性的数值条件。为了展示 CorticalFlow 的实用性,我们展示了它在大脑皮层表面重建这一具有挑战性的任务中的表现。与目前最先进的技术相比,CorticalFlow 可以生成更优质的曲面,同时将计算时间从 9 分半钟缩短到 1 秒。更重要的是,CorticalFlow 强制生成解剖学上合理的曲面;它的缺失一直是限制此类表面重建方法临床意义的主要障碍。
X射线成像是一种众所周知的技术,用于对物体的非破坏性成像和表征。基于X射线放射图,可以获得对象的形状,密度和原子数的信息。这些功能使X射线成像高度适用于非破坏性分析和测试。A key technique in non-destructive radiography-based analysis is material de- composition, whose aim is to determine the materials composition of an object.在医学成像中,可以应用材料分解以区分良性和恶性肿瘤[2]。在货物检查中,可以将材料分解构成以识别农产品中的走私商品或杂质[3]。Two main techniques for material decomposition have been described in the literature: Dual Energy Material Decomposition (DEMD) and Single Energy Material Decomposition (SEMD).DEMD利用材料衰减系数的能量依赖性。The linear attenuation coefficient as a function of the energy can be modeled as a linear combination of basis functions, such as those describing the energy dependency of the photoelectric interaction and total cross-section of the Compton scattering.另一种方法是选择依赖能量的基本材料(例如骨和水)作为基础函数[4]。[5]。此技术使衰减中的差异在常规重建中是看不见的。另一种方法是获取物体的高和低能量X光片,从而产生具有独特投影值的X光片[6]。然后,使用查找表将投影值链接到路径长度。基于此信息,可以获得材料厚度。减少暴露需要改编硬件,例如双源单元或光子计数检测器[4]。此外,由于DEMD需要进行两次扫描,因此对物体的辐射暴露可能是一个问题,尤其是在医学成像中[4]。此外,查找表的创建可能很耗时[6]或不准确[7]。单能投影(SEMD)另一方面,通过使用远程长度的知识来估算仅一次扫描的材料组成。这些路径长度可以从CT重建[6]或从3D激光扫描仪获得的对象的表面图像估算[8]。最近,显示路径长度也可以通过将对象的表面网格注册到其扫描的投影中直接从几个X射线投影中恢复[9]。此方法不需要除X射线扫描仪或完整CT扫描以外的其他硬件,它提供了将其集成到材料分解过程中的潜力。我们提出的方法估计了用X射线光扫描的物体的均匀混合物的化学质量分数。CAD-ASTRA工具箱用于计算路径长度和模拟多色X射线射线照相。
指导教师:Torleiv Bilstad 教授 外部指导教师:Bjørn Rusten 博士 论文题目:Salsnes 过滤器细网筛去除 MBBR 生物膜固体 学分(ECTS):30 关键词:生物膜固体分离生物质分离凝结-絮凝 MBBR Salsnes 过滤器废水处理
什么需要(我和e效?•几何修复/清洁 - •de-decoring(对物理学的几何形状不适合物理b)•缺乏自动射击(在网状网络中且稳健性(全 - hex,复杂的边界层)•auribu•auribu(on,mul(mul)(pemmota progena( -
摘要:本文提出了不同强度对大地圆顶结构的影响的确定。根据常规的八面体设计了分析圆顶的结构,该结构是根据创建其拓扑的两种不同的方法。使用了四个不同强度和记录持续时间的地震记录,这使得对8个模型进行数值分析成为可能。设计的空间结构是带有钢横截面的圆顶,这一点毫无疑问地以其轻度和覆盖非常大的面积的可能性,而无需使用内部支撑。设计钢圆顶目前是构造师和建筑师的挑战,他们考虑了他们的美学考虑。使用时间历史方法,该论文在应用不同方向(两个水平的“ X”和“ Y”和一个垂直“ Z”)中呈现了地震响应。显示了强制振动和记录强度的值,在此基础上,试图确定哪种地震记录可能对根据两种不同的结构拓扑而产生的设计的地质圆顶可能更不利。为此,使用了FFT(快速傅立叶变换)方法。还分析了结构的最大加速度和位移。进行的分析表明,地震激发对大地圆顶结构的影响,具体取决于塑造其拓扑的应用方法(方法1和2)。此外,该分析可能有助于评估偶然地震的影响。本文无疑将在设计地震区域的地球圆顶结构中有用。
回顾性分析我院2016年至2019年实施的颅骨修补术,对年龄、性别、诊断、手术材料、并发症进行分类,常规进行脑CT检查,创伤、肿瘤、缺血性、出血性中风、脑内血肿纳入研究,因颅颌面创伤行重建手术者排除。术后患者控制至少1年。在术前准备阶段,对每位患者进行脑CT检查,必要时进行脑磁共振成像观察。调查每位患者是否有伤口部位感染或全身感染灶,感染灶解决后至少1个月计划手术。开颅减压术中保留骨骼的患者骨瓣常规一次性置入腹部皮下组织,涉及额窦区的开颅手术用骨蜡和患者骨骼封闭额窦口,切除窦黏膜,开颅额窦。保存在腹部皮下脂肪组织内的骨瓣在开颅手术同期取出,使用前用含万古霉素的生理盐水彻底冲洗。自体骨、甲基丙烯酸甲酯和多孔聚乙烯植入物用粗vicryl缝线固定在颅骨上为标准。钛网用微型螺钉固定在颅骨上。
摘要:本文研究了计算模型和网格策略对微合金钢薄夹层材料回弹预测的影响。为了验证所选的计算策略,对实验获得的试件(U 型弯曲)与 FEA 结果进行了比较。计算中采用了结合各向同性和运动硬化定律的 Vegter 屈服准则。此外,还研究了变形网格元素(表面和体积)对回弹预测精度的影响。结论是,体积变形网格的选择并不能显著提高结果的准确性。此外,这是一种相当耗时的方法。更大的影响是通过选择硬化定律来监测的,其中各向异性的硬化定律更适合用于给定夹层材料的回弹预测。
©2021 Jane's Group UK Limited。未经事先书面同意,本报告的任何部分都不得以任何形式复制,重复使用或以其他方式分发,除了客户与Jane之间的许可协议中所允许的任何内部客户分配。与Jane的许可复制或重新分配的内容必须显示Jane的法律通知和作者归因。本文所包含的信息来自认为可靠的来源,但其准确性和完整性也不保证,也不需要基于它的意见和分析,并且在法律允许的范围内,简·诺(Jane's)对任何错误,任何错误,任何损失或损害或损害或费用均不承担任何责任。
摘要 — 具有宽带电磁屏蔽能力的透明导电材料在航空航天、医疗设备和电子通信领域有着广泛的应用。在不牺牲太多光学透明度的情况下实现增强的电磁屏蔽效果是学术界和工业界的技术趋势。在这里,我们通过实验提出了一种由纳米印刷基金属网和石墨烯涂层构成的柔性混合薄膜,用于透明电磁屏蔽应用。进行数值分析以研究电磁屏蔽和光学透明度之间的最佳平衡。在实验中,与参考组(仅有金属网的情况)相比,混合薄膜的屏蔽能力增强,而不会过度牺牲光学透射率。我们的工作为高性能光学透明屏蔽材料提供了一个混合平台,用于电磁环境保护。