摘要 会计人员一直站在使用新技术实现高速数据分析、提高准确性以及节省会计操作成本和时间的前沿。财务报告是财务会计的重要组成部分,具有独特的特点和要求,包括监管合规性。财务报告涉及大量数据和重复性任务,消耗了公司相当一部分财务和人力资源。因此,企业一直努力利用技术来提高业务流程的效率和有效性。近年来,会计专业人士和四大会计师事务所对将人工智能 (AI) 中嵌入的新兴技术用于财务报告的兴趣日益浓厚。本文旨在研究影响人工智能在财务报告中应用的因素,以及人工智能在不久的将来部分或全部用于财务报告的潜在机遇和挑战。本文还提出了一个概念框架来解决这些问题并促进该领域的未来研究。
摘要:非缺血性扩张型心肌病 (DCM) 是需要心脏移植的最常见疾病之一。尽管这种疾病的病因复杂,但巨型肌节蛋白 Titin 的移码突变可以解释多达 25% 的家族性 DCM 病例和 18% 的散发性 DCM 病例。许多研究表明,使用 CRISPR/Cas9 进行基因组编辑可以纠正肌节蛋白的截短突变,并为肌编辑奠定了基础。然而,这些疗法仍处于不成熟状态,只有少数研究表明它们可以有效治疗心脏疾病。本文假设,Titin (TTN) 特异性基因结构允许在广泛的位置应用肌编辑方法来重塑 TTN 变体并治疗 DCM 患者。此外,为了为开发有效的 DCM 肌编辑方法铺平道路,我们筛选并选择了 TTN 中有希望的靶位。我们从概念上探索了对称外显子的删除作为一种治疗方法,以在移码突变的情况下恢复 TTN 的阅读框架。我们确定了一组 94 个潜在的 TTN 候选外显子,我们认为这些外显子特别适合这种治疗性删除。通过这项研究,我们旨在为开发新疗法做出贡献,以有效治疗由编码具有模块化结构的蛋白质(例如 Obscurin)的基因突变引起的肌病和其他疾病。
* 通讯作者 三维 (3D) 培养方法的进步已导致类器官的产生,这些类器官重现了人类神经系统各个领域的细胞和生理特征。尽管已经开发出微电极用于与神经组织建立长期电生理接口,但对微电极和自由漂浮类器官之间长期接口的研究仍然有限。在本研究中,我们报告了一种可拉伸的柔软网状电极系统,该系统在 3D 类器官中建立了与人类神经元的密切体外电接口。我们的网状电极由基于聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐 (PEDOT:PSS) 的导电水凝胶电极阵列和弹性体聚(苯乙烯-乙烯-丁二烯-苯乙烯) (SEBS) 作为基材和封装材料构成。这种网状电极可以在 50% 压缩应变和 50% 拉伸应变下的缓冲溶液中保持稳定的电化学阻抗。我们已成功在这种聚合物网上培养了多能干细胞衍生的人类皮质类器官 (hCO) 超过 3 个月,并证明类器官很容易与网状物整合。通过同时进行刺激和钙成像,我们表明通过网状电刺激可以引发强度依赖性钙信号,与双极立体电极的刺激相当。该平台可用作监测和调节神经精神疾病体外模型电活动的工具。简介网状电极是一种新兴的脑组织慢性电生理接口平台 1,2 。与由硅等硬质材料制成的传统多电极阵列或柄探针不同,网状电极由柔性导电互连线和绝缘聚合物材料封装的电极组成。由于多种原因,网状电极已被证明能够实现稳定的长期接口。首先是它们的弯曲刚度低:通过具有薄层,它们可能更容易与神经组织贴合,从而最大程度地减少异物相互作用 3 。其次,网状电极排除的体积远小于其他技术(例如实心电极插入物)。网状电极可以做得小于 1 微米,并且已被证明在注入液体溶液后会膨胀和扭开 4,5 。网状电极的一个潜在应用领域是刺激和监测 3D 神经类器官中电活动的出现。神经类器官最初是人类诱导多能干细胞 (hiPSC) 的 3D 聚集体。随着时间的推移,hiPSC 衍生的分化细胞自组织成 3D 结构,重现发育神经轴域的某些方面 6 。这些类器官或它们的组合形成组装体,可用于研究早期
摘要 — 近年来,局部无网格法在数值模拟领域越来越受欢迎。这主要是因为它们可以对分散节点进行操作,并且可以直接控制近似阶和基函数。在本文中,我们分析了两种流行的局部强形式无网格法变体,即使用增强单项式的多谐波样条 (PHS) 的径向基函数生成有限差分 (RBF-FD) 和仅使用单项式的加权最小二乘 (WLS) 方法。我们的分析重点关注在二维和三维域中对分散节点计算的数值解的准确性和稳定性。我们表明,虽然当低阶近似足够时 WLS 变体是更好的选择,但对于高阶近似,RBF-FD 变体表现出更稳定的行为和更高的数值解准确性,但代价是更高的计算复杂度。
1 阿尔伯塔大学物理系,艾伯塔省埃德蒙顿 T6G 2E1,加拿大;munshi1@ualberta.ca (SM);kneupane@ualberta.ca (KN);ileperum@ualberta.ca (SMI);mhalma@ualberta.ca (MTJH) 2 马里兰大学细胞生物学和分子遗传学系,马里兰州帕克分校 20742,美国;jkelly22@umd.edu (JAK);chalpern@terpmail.umd.edu (CFH) 3 霍华德休斯医学研究所珍莉莉亚研究园区,弗吉尼亚州阿什本 20147,美国 4 阿尔伯塔大学李嘉诚病毒学研究所,艾伯塔省埃德蒙顿 T6G 2E1,加拿大* 通讯地址:dinman@umd.edu (JDD);sloerch@ucsc.edu (SL); michael.woodside@ualberta.ca (MTW) † 这些作者对这项工作做出了同等贡献。‡ 当前地址:美国加利福尼亚州圣克鲁斯市加利福尼亚大学化学与生物化学系,邮编 95064。
会议,ICAICR 2018,印度西姆拉,2018 年 7 月 14-15 日,修订精选论文,第二部分,ISBN 978-981-13-
摘要:随着电子产品的快速发展,热管理已成为最关键的问题之一。激烈的研究集中在用于增强传热的表面修饰上。在这项研究中,多层铜微壳(MCM)是为商业紧凑的电子冷却而开发的。沸腾的传热性能,包括临界热量(CHF),传热系数(HTC)和成核沸腾的发作(ONB)。研究了Micromesh层对沸腾性能的影响,并分析了起泡特性。在研究中,MCM-5显示了207.5 W/cm 2的最高临界热量(CHF),而HTC的HTC为16.5 w(cm 2·K),因为它具有丰富的微孔作为核位点,并且具有出色的毛细管焊接能力。此外,将MCM与文献中的其他表面结构进行了比较,并具有高竞争力和在商业应用中的高功率冷却的潜力。
©作者。2021 Open Access本文是根据Creative Commons Attribution 4.0 International许可证获得许可的,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者(S)和来源,并提供了与Creative Commons许可的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
在“现成”新抗原中共享的移码突变的潜在使用疫苗1,2,尼古拉斯·麦克格拉纳汉(Nicholas McGranahan)1,2,* 1癌症基因组进化研究小组,伦敦大学癌症研究所,保罗·奥戈尔曼(Paul O'Gorman),保罗·奥戈尔曼(Paul O'Gorman)伦敦亨特利街72号WC1E 6BT,英国 *信件:nicholas.mcgranahan.10@ucl.ac.uk(N。McGranahan)。摘要:与因错义突变引起的新抗原相比,癌症患者之间从微卫星不稳定的肿瘤中衍生出的新抗原是在癌症患者之间更常见的。Roudko等人最近的一项研究。评估共享的移状新抗原的免疫原性,这些新抗原有可能用于“现成”新抗原疫苗。主文本免疫检查点抑制剂(CPI)在一系列癌症类型中彻底改变了癌症治疗。通过靶向可防止免疫系统攻击癌细胞的抗体,这些疗法可以防止肿瘤免疫逃避,从而使T细胞能够识别出肿瘤细胞被激活并最终促进主动免疫反应[1]。新抗原是癌症突变,会引起免疫系统识别为异物的肽(图1)。但是,只有一部分患者受益于这些疗法,从而引起对“现成”癌症疫苗的新兴趣。与靶向疗法相反,该疗法的重点是特定可行的改变(例如Roudko等人的研究。egfr激活突变)[2]在许多患者的肿瘤中共享,免疫疗法的成功很大程度上归因于“私有”推定的肿瘤新抗原的数量[3],这些肿瘤[3]主要特异性地特异性属于每个肿瘤。例如,对结直肠癌的错义突变的研究发现,所研究的每个肿瘤样本的特征都具有明显的突变特征,并且仅与其他肿瘤标本共享多达6个突变的癌症基因[4]。那么,在发展有针对性的新抗原疗法的主要挑战是缺乏共同的靶标。如果每个患者的新抗原曲目都是独一无二的,那么问题是“现成的”?Roudko及其同事[5]最近的一项研究探讨了由微卫星不稳定基因组区域引起的共同的新抗原,并评估了这些区域是否可以刺激免疫反应。微卫星不稳定性描述了重复的核苷酸序列,这些核苷酸序列由于复制误差而累积突变。由于不匹配修复功能的丧失,从微卫星不稳定性区域得出的移码突变可以保留在基因组中。专注于微卫星不稳定性高(MSI-H)胃,子宫内膜和结直肠癌,因为观察到的增加了
教育背景: 1985 年:印度奥斯马尼亚大学生物学学士 1987 年:印度奥斯马尼亚大学微生物学硕士 1994 年:印度全印度医学科学院分子生物学博士 1996 年:美国杜兰大学医学院病理学博士后研究员 1992 年:印度安纳马莱大学工商管理文凭 (DBA) 1998-2001 年:德克萨斯大学 MD 安德森癌症中心胸心血管外科系研究助理 1997-1998 年:路易斯安那州立大学医学院外科系研究讲师 1996-1997 年:研究助理,导师:Scott M. Freeman 博士,医学博士,美国杜兰大学医学院病理学系,SL79,1993-1996 年博士后研究员,导师:Scott M. Freeman医学博士,病理学系,SL79,杜兰大学医学院,路易斯安那州 1991-1993:高级研究员,顾问:SK Panda,医学博士,全印度医学科学院病理学系,印度 1988-1991 初级研究员,顾问:SK Panda,医学博士,全印度医学科学院病理学系,印度