光子元面积,包括称为元原子的一系列纳米结构,提供了一种在特定波长下操纵光的新型方法。通过在基材上进行工程学的几何形状和功能排列,跨度可以用高精度操纵光波[1]。这种精确的控制使Metasurfaces非常适合各种应用,包括折射率感应。在各种领域(例如环境监测,食品安全检查,生物医学诊断,化学工业等)中,折射率感测至关重要[2]。由于低损失,低成本,较低的线宽度,高Q因子,介电元时间偏向于感测的突出[3]。在这里,我们在这项工作中提出了一个基于介电元面的折射率传感器。通过数值模拟研究了传感器的性能。获得的传输光谱在1μm至1.7μm的波长范围内描绘了双共振。这种双重共振的存在在传感器技术方面具有显着优势,因为它为监视变化提供了多种选择。此外,这种双重响应也增强了传感器的稳定性。通过研究了元原子中的圆柱插槽,并研究了其灵敏度的提高,从而进一步修改了传感器设计。
由教授领导的团体独立提出了“数字”元结构的概念。Della Giovampaola和Engheta [1]和Cui等。[2]。基于这些类型的人工材料的基本思想是依赖有限数量的基本包裹物(在最极端的情况下,只有两种),但是能够设计各种复杂的局部操作的能力。每当适用时,这种方法会大大简化设计过程,因为可以通过离散优化策略有效地探索搜索空间[3]。此外,它简化了制造过程,还提高了相对于不可避免的公差的鲁棒性。指的是电磁(EM)跨表面场景[2],人们可能会想到一组反射元素,例如在接地的介电介电底物上放置的金属斑块,理想地是特征在于单位 - 振幅恢复的特征,并以180的量子响应和量化的量子响应,以量身定量的量子,以量身定量的范围,以量身定量的编码为量子。最简单的二进制外壳,在2位案例中,0°,90°,180°和270°,依此类推。以这种方式,这些元素的每个可能的空间组合可以用数字编码顺序进行等效。在某种程度上,这个概念也可以解释为对所谓的“ Checker-board”元面的概括,该概念具有金属和人工 - 磁性导管元件的定期分布[4]。
带有轨道角动量(OAM)的涡流梁对于高容量通信和超分辨率成像具有重要意义。但是,芯片上的自由空间涡旋(FVS)和等离子涡旋(PVS)之间存在巨大差距,而主动操纵以及更多的通道中的多路复用已成为紧迫的需求。在这项工作中,我们演示了由螺旋等离子元素层,液晶晶体(LC)层和螺旋介质元素层组成的Terahertz(THZ)级联的MetadeVice。通过旋转轨道角动量耦合和光子状态叠加,PV和FV的平均模式纯度平均产生超过85%。由于螺旋跨面的反转不对称设计引起的,实现了OAM的均衡对称性破裂(拓扑电荷数不再以正面和负为正面发生,但所有这些都是正面的),产生了6个与脱钩的旋转状态和近距离/远距离位置相关的6个独立通道。此外,通过LC集成,可以实现动态模式切换和能量分布,最终获得多达12个模式,调制比率高于70%。这种主动调整和多渠道多路复用元点在PVS和FVS之间建立了桥梁连接,在THZ通信,智能感知和信息处理中显示出有希望的应用。
可以在空间和时间域中执行数学操作的时空光学计算设备可以提供前所未有的措施来构建高效且实时的信息处理系统。尤其重要的是要在紧凑的设计中实现综合功能,以更好地与电子组件整合。在这项工作中,我们基于非对称的跨表面的微波中的模拟时空区分剂实验表明,该微波在时空域中具有相位奇异性。我们表明,这种结构可以通过调整Spoof表面等离子体偏振子(SSPPS)的单向激发来引起理想的一阶区分和时间域中理想的一阶区分所需的时空传递函数。使用金属缝进行空间边缘检测,并通过不同宽度的高斯样时间脉冲检查设备的时间分化能力。我们进一步证实了此处证明的区别,即使有复杂的曲线,也可以检测到时空脉冲的急剧变化,理论上估计了空间和颞边检测的分辨率限制。我们还表明,通过此处实施的时空差异剂后的脉冲输入可以携带带有分形拓扑电荷的横向轨道角动量(OAM),从而进一步增加了信息数量。
摘要。无形的杂物长期以来一直吸引着流行的想象力,尤其是在保护现代高端工具免受潜在威胁的方面。几十年前,超材料和转型光学的出现引起了人们对隐形斗篷的极大兴趣,这些斗篷主要在地面和波导方式中证明。然而,尚未实现全向飞行斗篷,这主要是由于与跨表面分散的动态合成相关的挑战。我们展示了一个自主的空气吸引力的隐形斗篷,其中包含一套感知,决策和执行模块,能够在万花筒背景和中和外部刺激中保持隐形性。物理突破在于在可调式延误的时空调制中,以雕刻空间和频域中的散射场。为了智能地控制时空偏移,我们引入了随机进化学习,该学习通过最大概率推断自动与最佳解决方案一致。在一个完全自动驾驶的实验中,我们在无人机上实施了这一概念,并在三个规范的景观(海洋,陆地和空气)中展示了自适应的隐形性,相似性速度高达95%。我们的工作将隐形斗篷的家族扩展到了飞行方式,并激发了对物质发现和稳态元驱动器的其他研究。
随着全息技术的快速发展,基于跨表面的全息传播方案表现出极大的电磁(EM)多功能性潜力。然而,传统的被动式额叶受到其缺乏可重构性的严重限制,从而阻碍了多功能全息应用的实现。Origa-mi是一种机械诱导空间变形的艺术形式,它是多功能设备的平台,并引起了光学,物理和材料科学的极大关注。Miura-Ori折叠范式的特征是其在折叠状态下的连续重构性,在全息成像的背景下仍未探索。在此,我们将Rosenfeld的原理与Miura-Ori表面上的L-和D-金属手性对映异构体一起定制,以量身定制孔径分布。利用Miura-Ori折叠状态的连续可调性,金属结构的手性反应在不同的折叠构型上有所不同,从而实现了不同的EMALOGRAPHIC成像功能。在平面状态下,可以实现全息加密。在特定的折叠条件下,并由特定频率的自旋圆形极化(CP)波驱动,可以在具有CP选择性的指定焦平面上重建多重全息图像。值得注意的是,制造的折纸跨表面表现出较大的负泊松比,促进了端口和部署,并为自旋选择系统,伪装和信息加密提供了新颖的途径。
以 Ge 2 Sb 2 Te 5 (GST-225) 为代表的硫族化物相变材料 (PCM) 是一类在经历非晶态-结晶态相变时电子和光学特性会发生剧烈变化的材料。这一独特属性支撑了它们在非易失性电子数据存储(例如英特尔的 Optane TM 存储器)中的商业应用。受这一成功的启发,光子学自然而然地代表了 PCM 可以产生影响的下一个领域。事实上,过去几年来,基于 PCM 的光子学研究探索迅速扩展,其应用范围广泛,涵盖光开关、1-8 光子存储器、9 光学计算、10-14 有源超材料/超表面、15-25 反射显示、26,27 和热伪装。28,29 然而,这些光学设备的实现提出了独特的挑战和要求,通常与电子存储器的挑战和要求截然不同。因此,阐明这些材料在光子应用方面的一些常见困惑是有益的,这也是本文的重点。最后,我们还将就关键技术挑战提供我们的观点,这些挑战决定了光学 PCM 产生实际影响并在内存领域模仿其成功范例的未来道路。
大型语言模型(LLM),例如Chatgpt,Gemini,Llama和Claude接受了从互联网解析的文本数量的培训,并且表现出了出色的能力,可以以一种与人类无法区分的方式响应复杂提示的能力。对于由带有四个椭圆形谐振器的单位细胞组成的全dielectric寄生虫,我们在多达40,000个数据上呈现了一个llmfien,可以预测只有文本提示的吸收率谱,仅指定了元时间的几何形状。将结果与传统的机器学习方法进行比较,包括馈送前向神经网络,随机森林,线性回归和K-Nearest邻居(KNN)。值得注意的是,使用深度神经网络的大型数据集尺寸的细胞调整LLM(FT-LLM)的性能可比。我们还通过要求LLM预测实现所需光谱所需的几何形状来探索反问题。llms比Humans具有多个优势,这些优点可能使他们有益于研究,包括处理大量数据,数据中发现的隐藏模式并在高维空间中运行的能力。这表明他们可能能够利用对世界的一般知识比传统模型更快地学习,从而使他们的研究和分析工具有价值。
摘要:全dielectric Metasurfaces中连续体(BIC)中的结合状态增强了纳米级的光 - 物质相互作用,因为它们的无限Q因子和强场限制。在已经报道的各种现象中,它们对手性光的影响最近引起了极大的兴趣。在这里,我们研究了与si nanorod二聚体在石英底物上制成的各种跨膜相关的固有和外在光学手性的出现,比较了三种情况,比较了三种情况:平行的纳米棒(中性)(中性),移位和倾斜的二聚体,/倾斜的二聚体,/ lone Index Matchex Matte Exex Matching Matching Matters Matterspertrate。我们分析了远场(FF)相互作用的圆二色性(CD)和近场(NF)分布的螺旋性。我们表明,基于外部手性,在FF中实现手性反应的最佳方法是利用出现在倾斜的纳米棒二聚体的情况下出现的准BIC(Q-BIC)。相比之下,在变化二聚体的情况下,螺旋密度大大增强,因为它具有内在的手性,其值比圆形极化平面波大2个数量级。这些所谓的超细电磁场集中在元表面内的纳米级上,有望在诸如强耦合,光致发光发射或其他局部光的现象中具有吸引人的意义。关键字:超级手续光,连续性,手性,螺旋性,近场
半导体光电设备,能够以紧凑且高效的方式将电力转换为光线或相反的光线为电力,代表了有史以来最先进的技术之一,该技术具有广泛的应用范围内的现代生活。近几十年来,半导体技术已从第一代狭窄带隙材料(SI,GE)迅速发展为最新的第四代超宽带隙半导体(GAO,Diamond,Aln),其性能增强以满足需求的增长。此外,将半导体设备与其他技术合并,例如计算机辅助设计,最先进的微/纳米织物,新型的外延生长,已经显着加以促进了半导体Optoelectronics设备的发展。在其中,将元浮面和半导体的光电设备集成,为电磁反应的芯片控制打开了新的边界,从而可以访问以前无法访问的自由度。我们回顾了使用集成的跨侧面的各种半导体光电设备在芯片上控制的最新进展,包括半导体激光器,半导体光发射器,半导体光电镜像和低维度的半导体。MetaSurfaces与半导体的集成提供了晶圆级的超级反理解决方案,用于降低半导体设备的功能,同时还提供了实施实际应用中实现实际应用中的实用平台。