NIST 的前身国家标准局 (NBS) 于 20 世纪 50 年代中期开始致力于满足新兴半导体行业的测量需求。虽然这项工作最初侧重于其他政府机构的晶体管应用,但在 20 世纪 60 年代初,该局向美国材料与试验协会 (ASTM) 和美国电子工业协会 (EIA) 寻求行业指导。ASTM 的首要任务是准确测量硅的电阻率。NBS 的科学家开发了一种实用的无损测量方法,其精度比以前的破坏性方法高出 10 倍。该方法是五种工业标准和广泛用于校准行业测量仪器的电阻率标准参考材料的基础。第二个项目由 EIA 专家小组推荐,旨在解决晶体管的“二次击穿”故障机理。该项目的成果得到了广泛应用,包括解决导致航天飞机发射延迟的主发动机控制问题。
NIST 的前身国家标准局 (NBS) 于 20 世纪 50 年代中期开始致力于满足新兴半导体行业的测量需求。虽然这项工作最初侧重于其他政府机构的晶体管应用,但在 20 世纪 60 年代初,该局向美国材料与试验协会 (ASTM) 和美国电子工业协会 (EIA) 寻求行业指导。ASTM 的首要任务是准确测量硅的电阻率。NBS 的科学家开发了一种实用的无损测量方法,其精度比以前的破坏性方法高出 10 倍。该方法是五种工业标准和广泛用于校准行业测量仪器的电阻率标准参考材料的基础。第二个项目由 EIA 专家小组推荐,旨在解决晶体管的“二次击穿”故障机理。该项目的成果得到了广泛应用,包括解决导致航天飞机发射延迟的主发动机控制问题。
摘要 - 已将宝石检测器和激活箔用于脉冲中子源的热束线的剂量测定。第一个是一个活跃的检测器,它利用源的脉冲性质,使用飞行技术进行测量。相同的检测器已成功地用于测量梁的轮廓。第二个是一种被动辐照方法,它独立确认了ISIS中子源的Emma和Rotax束线的测得的通量。它们具有不同的热光谱,第一个光谱是用水(300 K)和第二种液态甲烷(100 K)的。随后使用参考SRAM模块的单个事件效应测试对这两个特征的梁线进行了用于辐照微电子。表明结果是一致的,并且必须应用一个校正因子以将冷束线上的结果扩展到室温下的结果。
该项目旨在设计一种快速 ADC (FADC),用于伽马射线望远镜的相机。未来几年,将开发一种基于硅光电传感器 (SiPM) 的新型相机,旨在为 CTA (https://www.cta-observatory.org) 的大型望远镜 (LST) 提供未来解决方案。SiPM 的使用与创新读出电子设备的开发相结合,不仅可以延长观测时间并提高相机的坚固性,还可以提高整个能谱的性能。位于纳沙泰尔的 EPFL 的 Aqua 团队的使命是建模和开发基于量子设备的硬件/软件系统。重点是高速 2D/3D 光学传感、嵌入式和可重构处理架构、单光子雪崩设备 (SPAD) 和设计优化技术。在这个项目中,Aqua 参与了 LST 合作中这些创新相机的研发,包括前端和读出电子设备。该项目的挑战是实现所需的高速度,同时降低整个系统 8,000 个通道所需的总功率。该项目包括专用 ASIC 的设计和生产。
摘要综合电路行业与中国的国民经济发展和安全国防有固有的联系。其产品质量和生产力作为瓶颈分辨率至关重要,取决于微电机设备运动平台的性能。但是,运动平台面临一系列要求,包括高加速度,超精确定位等。理论上可以通过典型的宏观微型驾驶概念平台来解决这些要求。因此,提出并实施了各种运动平台。在探索宏观微运动平台的分析过程中,特别是对于某些关键结构,例如链路框架,柔性铰链机制等,提出了许多有效的多物理耦合优化方法,以获得平台的出色性能。同时,描述了宏观微运动平台的振动抑制,以确保超专业定位。终于提出了发展趋势以及面临宏观微运动平台的问题。本综述将促进微电子制造设备的升级,并加速微电子制造业的快速发展。关键字:集成电路行业,宏观微型运动平台,高速加速,高速,
虽然在将细菌行为与电极联系起来方面取得了令人瞩目的进展,但促进合成生物学进步的一个有吸引力的观察结果是,细菌菌落的生长可以通过随时间变化的阻抗变化来确定。在这里,我们通过调节带电代谢物积累的工程群体动态将合成生物学与微电子技术相结合。我们通过群体控制电路展示了细菌对重金属反应的电检测。然后,我们将这种方法应用于同步遗传振荡器,从工程细菌中获得振荡阻抗曲线。最后,我们将电极阵列小型化以形成“细菌集成电路”,并展示其作为遗传电路接口的适用性。这种方法为合成生物学、分析化学和微电子技术的新进展铺平了道路。
电子学是当代科学与工程中发展最快的学科之一。由于对微型化和集成化的不断追求,大多数电子元件都是在所谓的微型尺度上设计和制造的。出于这个原因,专业人士中建立了微电子学这个专业术语。如今,微电子元件是每种工业或家用电子设备不可或缺的一部分。不幸的是,像其他设备一样,微电子元件的使用寿命也是有限的。其可靠性的基本问题之一是连接。在微电子封装[17]中,使用焊接、胶合和键合连接,其中焊点是最重要的[13, 15, 27]。大多数焊点损坏是由于热机械载荷造成的,其直接原因是由于连接材料的热膨胀系数不匹配而产生的应力[17, 35, 40]。据估计,微电子封装中约 65% 的损坏与热机械问题有关 [2, 38]。可靠性被定义为物体在给定环境条件下、在一段规定时间内正常运行的属性。可靠性的数学描述允许在定义的操作条件下评估物体故障的概率。电子封装接头可靠性预测的传统方法之一是基于所谓的双材料界面的理论分析。双材料界面是指两种具有不同热机械性能的材料之间的机械连接。
评论论文 DOI:10.34343/ijpest.2020.14.e01002 下一代互联传感器的微电子技术挑战 Olivier A. Bonnaud 1, 2, * 1 雷恩第一大学微电子与微传感器系,IETR UMR CNRS 6164,雷恩,法国 2 GIP-CNFM,法国格勒诺布尔 MINATEC 方向国家微电子和纳米技术培训协调中心 * 通讯作者:Olivier.bonnaud@univ-rennes1.fr (OA Bonnaud) 收到日期:2019 年 11 月 24 日 修订日期:2020 年 2 月 2 日 接受日期:2020 年 2 月 3 日 在线发布日期:2020 年 2 月 12 日 摘要 全球数字社会的到来正在推动物联网 (IoT) 的发展和互联对象的创造。许多联网物体都包含各种传感器,这些传感器的数量在过去 15 年里呈指数级增长。与此同时,服务器和数据中心也呈指数级增长,能源消耗也同样呈指数级增长。为了避免在 20 年内达到无法克服的全球能源限制,必须提高微电子系统的集成度,并将其能耗降低 100 倍。这涉及到微电子的所有方面,主要是基本设备、设计和电路架构。这只有通过调整人力资源,即教学方法来培养能够应对挑战的技术人员、工程师和医生,才能实现。本文讨论了联网传感器的背景、它们的能耗和联网物体未来技术的新挑战,以及法国微电子教学网络为培养能够应对挑战的未来专家而制定的战略。关键词:传感器、微电子、联网物体、技术和人力挑战。 1. 引言 21 世纪的世界正日益转向数字化社会,这导致了物联网 (IoT) 的发展和互联物体的发展。这种演变与社会数字化相对应,服务的重要性日益增加。话虽如此,工业仍必须生产这些物体。许多互联物体都包含各种传感器,以控制社会的所有活动,如健康、环境、交通、能源或安全,以及工业生产 [1]。后者对应于第四次工业革命,即工业 4.0。[2]。这就是为什么新的互联传感器系列被称为传感器 4.0。[3]。世界上这些物体的数量增长令人印象深刻,因为近 15 年来一直呈指数级增长。传感器和执行器的数量也是如此,因为每个互联系统最多可以有几十个传感器。此外,互联网接入服务器和数据中心已经大幅增长,系统的运行,数据和存储会导致功耗同样呈指数级增长。目前的预测表明,到 2040 年,物联网的功耗预计将与全球所有形式(交通、住房、通信、工业、农业)的当前能耗(2018 年)持平。这首先会对微电子系统和智能传感器的集成产生影响,这些系统必须包含越来越多的功能,包括与通信相关的功能,确保安全性和可靠性背景下的任务概况,从而增加复杂性,但必须消耗更少的能源,这显然是矛盾的。应通过发挥微电子的所有方面,包括电路设计和架构,以及涉及新材料和新电子概念的基本设备概念和制造技术,将这种消耗减少 100 倍。只有通过调整人力资源,即培训能够克服挑战的技术人员、工程师和医生的教学方法,才能实现这一转变。