Otahal,Alexander 在微流体器官芯片系统中软骨和滑膜组织结构之间的细胞外囊泡的生物分布
要完成的任务的定义:博士后研究人员将利用新的microfluidic系统来概括阴道环境(阴道 - A-Chip)。他或她将与一位负责直接实施阴道芯片的工程师协同工作。强烈建议实验生物学的技能,尤其是微流体,细胞培养和/或细菌培养的技能。该系统将主要用于评估月经保护中某些污染物的毒性,例如硅酸盐或弹性体对阴道细胞的生存能力以及相关的细菌群落。也可以实验探索与细菌群落动态有关的问题,特别是在某些因素(例如抗生素及其耐药性)方面。同时,博士后研究人员将可以使用已经建立的临床队列,以量化健康年轻女性的阴道拭子中识别前识别的化学残留物,并纵向跟踪。
降低了法国巴黎的制造成本,2025年1月9日 - 台式小组工厂公司Astraveus SAS(“ Astraveus”或“ Company”),今天宣布了微流体台式系统中CAR-T细胞有史以来首次成功的端到端生产。 使用其全自动Lakhesys台式细胞工厂TM,Astraveus能够证明其独特的微流体细胞疗法处理方法的潜力,该方法具有降低制造成本并通过数量级来降低制造成本并增加吞吐量的能力。 完全自动化的Lakhesys台式细胞工厂TM将整个细胞疗法的制造过程和机上分析集成到一个多合一的系统中,从而利用了先进的微流体技术,以实现最佳的细胞质量和有效的处理。 通过从临床前到商业阶段可扩展的并行化,Lakhesys TM台式式池厂大幅度降低了商品成本,最小化所需的实验室空间,并在整个制造过程中消除了细胞应力。 阿斯特拉维斯(Astraveus)首席执行官的首席执行官JérémieLaurent博士评论说:“我们很高兴看到我们的团队的努力在我们准备启动Lakhesys Banchtop Cell Factory时实现了。。降低了法国巴黎的制造成本,2025年1月9日 - 台式小组工厂公司Astraveus SAS(“ Astraveus”或“ Company”),今天宣布了微流体台式系统中CAR-T细胞有史以来首次成功的端到端生产。使用其全自动Lakhesys台式细胞工厂TM,Astraveus能够证明其独特的微流体细胞疗法处理方法的潜力,该方法具有降低制造成本并通过数量级来降低制造成本并增加吞吐量的能力。完全自动化的Lakhesys台式细胞工厂TM将整个细胞疗法的制造过程和机上分析集成到一个多合一的系统中,从而利用了先进的微流体技术,以实现最佳的细胞质量和有效的处理。通过从临床前到商业阶段可扩展的并行化,Lakhesys TM台式式池厂大幅度降低了商品成本,最小化所需的实验室空间,并在整个制造过程中消除了细胞应力。JérémieLaurent博士评论说:“我们很高兴看到我们的团队的努力在我们准备启动Lakhesys Banchtop Cell Factory时实现了。首次使用完全自动化的端到端微流体系统成功生产了CAR-T细胞,为我们的专用台式电池工厂提供了概念验证。“我们的方法已成功地将一个非常复杂的过程微型化,将制造系统的规模降低到书本的规模 - 少于现有技术的大小。生产时间仅为26小时,我们还证明了我们的无珠微流体选择技术可实现快速的CAR-T细胞制造。这些结果表明,其潜力比竞争对手技术便宜得多。” JérômeLarghero教授,细胞和基因疗法,巴黎Meary Center和Astraveus的科学顾问委员会成员说:“通过使其生产更具可扩展性,更便宜和分散的化中心化,Astraveus为使细胞疗法成为新的护理标准奠定了基础。虽然这是第一步,但Lakhesys台式细胞工厂具有巨大的潜力,可以转化细胞和基因疗法的产生,以造福患者。”
满足全球诊断和监测需求一直是一个挑战,尤其是在实验室设施有限的地方。为了解决这个问题,微流体设备已集成到诊断框架中。由于其使用的性质,用于诊断和监测的微流体设备应是一种使用和一次性。由于这些设备通常是由源自不可修复和/或不可再生来源的热塑性制成的,因此它们的生产,使用和处置都伴随着高碳足迹。使用用于可持续性方法的设计,这项工作为开发供应链网络的开发提供了优化模型,该模型将经济和碳足迹视为目标。使用来自文献和行业的数据来证明该模型。分析的结果表明,假设制造厂所需的整个聚合物饲料可以仅由再生聚对苯二甲酸酯组成,无论哪种优化参数的优先级。研究中开发的模型表明,当碳足迹优先考虑碳足迹时,使用再生聚对苯二甲酸酯的产生微流体装置伴随着0.13 kg CO 2 -eq/d。当优先考虑成本目标的最小化时,这一数量的排放也对应于每单位产品的成本为0.0546 $/d。这证明使用回收聚合物可以是减少微流体行业对不可持续材料的依赖性的一种方法。
我们在光刻和添加剂制造之间的接口上提供3D微加工解决方案。这将导致对齐的3D打印功能,例如在芯片上,在纤维上,井中和具有光学质量表面的微流体通道中。
其相关学科或MSC(生物技术,微生物学或生命科学)通过处理临床样本在微生物学领域的最低经验。对于化学工程师,设计微流体设备进行分离过程的经验。
微流体设备在文献中越来越广泛地广泛应用于众多令人兴奋的应用,从化学研究到护理设备,通过药物开发和临床方案。但是,设置这些微环境,引入了局部控制所研究现象所涉及的变量的必要性。因此,文献深入探讨了引入感应元素以研究微流体设备内部的物理量和生化浓度的可能性。生物传感器,特别是其高精度,选择性和响应性而闻名。但是,他们的信号可能具有挑战性的解释,必须仔细分析以执行正确的信息。此外,已经证明了适当的数据分析,即使是为了提高生物传感器的质量。在这方面,机器学习算法无疑是从事这项工作的最合适的方法之一,自动从数据中学习并强调生物传感器信号的特性充其量。有趣的是,它也被证明可以使微流体设备本身受益,这是一种新的范式,即文献开始命名“智能的微流体学”,理想情况下可以在这些学科中结束这种有益的互动。本综述旨在证明三合会微流体 - 生物传感器计算学习的优势,该学习仍然很少使用,但具有很好的视角。简要描述了单个实体后,不同的部分将证明双重相互作用的好处,并强调采用了审查的三合会范式的应用。
09:15 AM- 09:45 AM“微流体人体生理肝模型作为药物诱导肝损伤的筛查平台”。教授。Biman B. Mandal,生物科学与生物工程系,IIT Guwahati
在合成过程中,纳米材料会逐渐发生转变,从而产生明确的纳米晶体特性。目前,工业上最广泛使用的是纳米材料的批量合成。然而,由于批量反应器内混合不一致、局部浓度和温度变化,出现了可重复性和可扩展性问题。在流动合成中,使用微流体反应器可以克服这些限制,因为大的表面积与体积比可以增强热量和质量传递,从而加快反应速度并提高产量。[4c,5] 在快速化学中,化学转化发生得非常快,并且仅通过混合过程进行控制。因此,微流体系统内的增强混合使涉及不稳定中间体的快速连续反应能够发生 [6],由此产生的均质环境提高了对所需产品的选择性,从而提高了反应产量。此外,流动化学可以通过控制反应的停留时间,在不稳定的反应性物质分解之前将其分离 [7],方法是调节反应物的流速或微反应器长度。高混合性是微流体系统的一个关键优势,尽管在层流状态下,缓慢扩散占主导地位。[8] 微通道内产生的抛物线速度分布导致较长的停留时间,这不可避免地会产生粒度分散性,[10,35] 如图 1A 所示。促进对流并增强微通道内的混合是减少这种多分散性的一种方法,例如,通过在拐角和弯道引入 Dean 涡流或通过分段液-液/液-气流动引入 Taylor 涡流,[10,36] 如图 1B 所示。此外,流动化学中对反应参数的严格控制是实现实验室间反应条件标准化的一个主要优势,从而提高了实验的可重复性。[10] 在安全性方面,微流体系统消耗的危险试剂量较少,降低了安全风险,并允许使用否则会非常危险的极端化学条件。
