C. Condusum C. Coyleae C. Diphtheria C. falsenii C. Flavescens C. Freiburgense C. Freneyi C. Genitalium C. Glucuronolotilticmicum C.谷氨酰胺C. Hansenii C. Hansenii C. Imitans C. imitans C. jeikeium C. kroppenstiiii c. kroppenstedtiii c. c. lipoplien c. lipoplienc Uchotii C. Minute C. mucifaciens C. Mycetoides C. Pilbarense C. Pseudodiphthericum C. Pseudogenital C. Pseudogenital C. PseudogenieniTris C. pyruviciproducens C. Resistant C. Riegelii C. segmentosum C. Simulating C. singular C. station C. striped C. Suicordis C. Sundsvallense C. tuzsenii C. Timonense C. Tuscaniense C.溃疡C.尿素C.尿素尿素C.变量C. viterumeruminis C.疾病 div>
Antony Van Leeuwenhoek Antony Van Leeuwenhoek被称为微生物学之父。他从1632 - 1723年居住在荷兰共和国。他最初是一个织物商人,他创建了自己的显微镜来检查织物的质量。显微镜显微镜是用于放大小物体的仪器。由于他的好奇心,他后来使用显微镜看着不同的东西,例如水,血液和唾液。他看到微小的东西四处走动,称它们为动物动物,这意味着很小的动物。在此之前,没有其他科学家报告看到这样的东西,因此其他科学家一开始就不相信他。但是,在写信给英格兰皇家学会并向他们展示他的发现后,其他科学家开始听他的声音。当他和其他科学家开始使用显微镜看更多动物时,他们意识到它们实际上不是微小的动物 - 相反,它们是不同类型的微小生物,例如细菌,病毒和真菌。
这些观察结果表明,水和土壤中充满了微小的生物,尽管并非全部属于微生物类别。这些微生物或微生物的大小是如此之小,以至于用独立的眼睛看不到它们。其中一些,例如在面包上生长的真菌,可以用放大镜看到。没有显微镜的帮助就无法看到其他人。这就是为什么这些称为微生物或微生物的原因。微生物分为四个主要群体。这些组是细菌,真菌,原生动物和一些藻类。这些常见的微生物中的某些图1和图2所示。2.1-2.4。 病毒也是显微镜。 但是,它们仅在宿主生物体的细胞内繁殖,这可能是细菌,植物或动物。 一些病毒如图所示 2.5。 常见的疾病,例如感冒,流感(流感)和大多数咳嗽是由病毒引起的。 严重的脊髓灰质炎和鸡肉痘病也是由病毒引起的。 痢疾和疟疾等疾病是由原生动物(原生动物)引起的,而伤寒和肺结核(TB)是细菌疾病。 您已经在VI和VII类中了解了其中一些微生物。2.1-2.4。病毒也是显微镜。但是,它们仅在宿主生物体的细胞内繁殖,这可能是细菌,植物或动物。一些病毒如图2.5。常见的疾病,例如感冒,流感(流感)和大多数咳嗽是由病毒引起的。严重的脊髓灰质炎和鸡肉痘病也是由病毒引起的。痢疾和疟疾等疾病是由原生动物(原生动物)引起的,而伤寒和肺结核(TB)是细菌疾病。您已经在VI和VII类中了解了其中一些微生物。
微生物是没有显微镜的微小生命形式。他们约占地球生物的60%。“微生物”一词是指各种微观生物,包括细菌,真菌,病毒,古细菌和生物。这些微生物可能对人类无害或有害。一些微生物会引起严重的感染和疾病,而另一些微生物有助于维持环境平衡。古细菌是单细胞原核生物,具有与细菌不同的细胞壁结构。它们包含独特的脂质,使它们能够在极端环境中蓬勃发展。古细菌也可以在人类的肠道和皮肤中找到。微生物,包括微生物,是作为单细胞或簇存在的微观生命形式。有七种主要类型:细菌,古细菌,原生动物,藻类,真菌,病毒和多细胞动物寄生虫(Helminths)。古细菌由于其独特的细胞壁结构和缺乏肽聚糖而与真实细菌区分开。它们是可在极端条件下生存的原核细胞。一些古细菌组包括甲烷基因,卤素,热疗法和精神病/冷冻剂。这些生物使用各种能源,例如氢气,二氧化碳,硫或阳光(光营养形式)来存活。真核生物是包含核和复杂细胞器的单细胞或多细胞细胞。他们使用专业结构通过光合作用或吸收/摄入获得滋养。大多数真核细胞具有真实的核,并且主要是多细胞的。在数量,生物量和多样性方面,最大的微生物群是真核生物。鞭毛使用类似鞭子的结构进行运动;纤毛具有微小的跳动头发; Amoeboids采用伪虫; Sporozoans是非运动的。由几丁质组成的细胞壁支持各种营养方法:分解器吸收有机材料,共生体与植物形成关系,寄生虫与宿主有害相互作用。真菌产生称为菌丝的丝状管,骨料形成菌丝体。繁殖是通过释放孢子而发生的。非细胞实体由核酸核心组成,这些核酸核心被蛋白质涂层包围,缺乏繁殖外宿主细胞或独立代谢的能力。他们可以感染原核细胞和真核细胞,从而导致疾病。真核生物(如扁虫和round虫)共同称为蠕虫,在技术上不是微生物,而是微生物生命阶段,对于临床目的而言很重要。微生物的生物实体太小,无法用肉眼看到。例子包括细菌,古细菌,藻类,原生动物和微观动物(如尘螨)。尽管它们的重要性,但这些生物在历史上被低估了,直到Antonie van Leeuwenhoek发明了显微镜。发现微生物的发现使路易斯·巴斯德(Louis Pasteur)意识到许多疾病是由它们引起的,促进了巴氏杀菌的实践以确保食品安全。今天,我们认识到微生物在各种环境中的作用,包括水,土壤,动物皮肤和消化道。这种理解强调了免疫系统在预防疾病中的重要性。微生物在生态系统中起着重要作用,就像其他生物一样。细菌,特别是与引起疾病的病原体有关,但也具有帮助人类的有益特性。研究表明,古细菌与Eubacteria明显不同,甚至可能与人类更紧密相关。古细菌可以在各种环境中找到,包括水,土壤和我们的消化系统,它们有助于维持我们的健康。他们也可以在极端条件下繁衍生息,例如高温,酸度或咸味,使其成为温泉的常见居民和大多数生物体敌对的其他地区。几种动物物种以微观形式出现,包括节肢动物,旋转膜,loricifera,nematodes和原生动物。原生动物是一组单细胞的真核生物,其比细菌或古细菌的细菌更像动物和植物。它们会引起几种严重的人类疾病,例如疟疾,弓形虫病,贾第鞭毛虫,非洲卧铺疾病和chagas病。像酵母一样的微观真菌对人类无害,但在烘烤和酿造中起着至关重要的作用。酵母以糖为食,并将其转化为二氧化碳和乙醇,这会导致烘焙食品上升和发酵饮料变得陶醉。模具是微生物,与真菌具有某些特征但不是真正的真菌。它们包括感染植物并在过去引起毁灭性作物失败的致病霉菌。粘液模具是能够令人印象深刻的合作的单细胞生物,许多细胞聚集在一起以作为一个实体运行。科学家已经使用粘液模具来研究智能和解决问题。微观藻类曾经被认为是植物,但现在被认为是导致陆地植物的谱系的亲属。这些光合生物在整个历史中都很重要,有助于将氧气泵入大气中。藻类既可以通过清洁水,产生氧气或产生最终在我们的海鲜和饮用水中产生的有毒化合物来受益和伤害人类。科学家正在努力进行分类的其他许多微观生物。过去,许多微生物被聚集在“生物学家”的类别下,但是许多科学家现在认为该系统不足。在这里,科学家曾经使用文章文本,曾经使用一个称为“ Protista”的王国对无法识别为植物,动物或真菌的真核生物进行分类。然而,遗传分析揭示了该群体的许多成员与其他王国更紧密相关,而不是彼此之间的关系。不同的微生物可能对人类无害或有害,例如链球菌细菌,会导致链球菌喉咙和猩红热,以及乳酸杆菌,这有助于抵抗诸如胃流感之类的疾病。微生物提出的新发现已经根据光学显微镜研究推翻了先前的假设,揭示了对微生物的更复杂的理解。研究的进步导致了过去十年来我们对这些微小生命形式的理解的重大转变,并继续迅速发展。
创建了ATCC许可的衍生®计划,以确保质量并解决处理生物材料的全球责任。将代表ATCC®收取源自ATCC®生物材料的产品的特许权使用费。为了接收这些产品,您组织的授权代表必须同意最终用户协议的条款。必须在我们能够处理含有ATCC®生物材料的冻干微生物制剂的订单之前对您的组织进行注册。如果您对该程序有其他疑问,请联系LIOFILCHEM客户服务。
水产养殖取决于微生物,因为它们是自然存在的,并且可以目的添加以实现各种目的。此外,某些细菌可能会避免鱼类和幼虫免受疾病的侵害。因此,在水产养殖栖息地中测量和修改微生物种群至关重要,以提高水质并停止传染病的发展。在几年内,水产养殖系统可以有效地管理生态系统过程,并使用微生物种群监测水质。为了彻底了解有利的和不利的水产养殖系统,应彻底研究微生物体。,但是必须正确地开发和管理这些微生物。与此类似,使用益生菌来控制微生物组可能会减少对水产养殖中抗生素的需求。最近的研究表明,益生菌细菌可能会显着降低患病鱼幼虫的死亡率,并可以控制活饲料中的鱼类病原细菌。但是,缺乏对重要微生物相互作用的知识,这些系统的整体生态现在限制了水产养殖中微生物群的有效调节。水生自然环境的微生物种群迅速适应环境变化。这些变化可能是适度的,以某些代谢途径的激活或失活而出现,或者可能会对微生物群落的一般化妆和活动进行修改。一个水样品可用于研究基因组和转录组组成的组合[1-3]。现在,高通量测序(HTS)技术已经如此迅速地进步,可以使用全面的系统生物学策略来监测微生物水社区的变化。
卤代有机化合物在工业和农业中的广泛使用对环境和公共健康构成了重大挑战。这些化合物具有毒性、疏水性和抗降解性,会在土壤和地下水中积累,导致长期污染(Ackerman Grunfeld 等,2024;He 等,2021)。有机卤化物呼吸细菌(OHRB),包括脱卤球菌、脱卤单胞菌和脱卤杆菌,在不同环境中对这些污染物的转化起着关键作用(Matturro 等,2017;Qiu 等,2020;Xu 等,2024)。然而,卤代有机污染物的微生物降解有时效率低下。降解率通常较低,在某些情况下,这些微生物转化会产生更多有毒副产物(Ding 等,2013)。为了应对这些挑战,需要创新策略来调节和增强 OHRB 的代谢活性,从而加速卤代有机污染物的降解。本研究主题精选了一系列前沿研究,为微生物脱卤过程、与功能材料的相互作用以及环境修复的综合方法提供了见解。通过汇集该领域的六项最新研究,我们希望促进对更有效地降解和修复有机卤化物污染物的综合方法的理解和应用。