聚合物复合材料在我们的日常生活中无处不在,因为它们的功能/机械性能[1],这种材料的机械性能是由构成结构[2]的纳米级/显微镜特征所支持的,并且在此主题上有一些出色的评论[3-7]。传统的机械测试方法获取有关聚合物及其复合材料的宏观物理特性的信息,重要的是要注意,可能会错过有关这些材料中存在的纳米级/微观结构的贡献的信息[8],并且在分析生物学样本(尤其是用于评估细胞机械的方法)方面存在重大兴趣。多尺度结构和宏观特性的相关性是当前分析研究的一个领域[10,11];可以采用各种不同的实验室和计算技术来理解
聚合物复合材料在我们的日常生活中无处不在,因为它们的功能/机械性能[1],这种材料的机械性能是由构成结构[2]的纳米级/显微镜特征所支持的,并且在此主题上有一些出色的评论[3-7]。传统的机械测试方法获取有关聚合物及其复合材料的宏观物理特性的信息,重要的是要注意,可能会错过有关这些材料中存在的纳米级/微观结构的贡献的信息[8],并且在分析生物学样本(尤其是用于评估细胞机械的方法)方面存在重大兴趣。多尺度结构和宏观特性的相关性是当前分析研究的一个领域[10,11];可以采用各种不同的实验室和计算技术来理解
1 ,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国
J. Alvarez* a,b,c,C.Marchaet A,B,C,A。Morisset A,B,D,L。Dai A,B,E,F,J.-P。 Kleider A,B,C,RaphaëlCabald,P.R。 B Sorbonne University,CNRS,巴黎电力和电子工程实验室,法国75252; C ile -de -France(IPVF)的C光伏研究所,30 Rd 128,91120 Palaiseau,法国; D同型太阳能电池实验室,新能源技术研究所(CEA -LITEN),50 Avenue du LacLéman,73375,Le Bourget -Du -Du -Du -Du -lac,法国; E界面和薄层物理实验室(LPICM),CNRS,Ecole Polytechnique,91128 Palaiseau,法国; f冷凝物质物理学实验室(LPMC),ÉcolePolytechnique,91128 Palaiseau,France
近来,生物组织电子显微镜的成像吞吐量空前提高,使对整个大脑等大型组织块的超微结构分析成为可能。然而,对大型生物样本进行均匀、高质量的电子显微镜染色仍然是一项重大挑战。到目前为止,评估电子显微镜的染色质量需要对样本进行端到端的整个染色方案,对于大型样本来说,这可能需要数周甚至数月的时间,这使得此类样本的方案优化效率低下。在这里,我们提出了一种原位延时 X 射线辅助染色程序,它打开了电子显微镜染色的“黑匣子”,可以实时观察单个染色步骤。使用这种新方法,我们测量了浸入不同染色溶液中的大型组织样本中重金属的积累。我们表明,固定组织中测得的锇积累量在经验上服从孵育时间和样本大小之间的二次依赖关系。我们发现,亚铁氰化钾(四氧化锇的经典还原剂)在锇染色后可使组织变得透明,并且组织在四氧化锇溶液中会膨胀,但在还原锇溶液中会收缩。X 射线辅助染色让我们能够了解原位染色动力学,并使我们能够开发出一种扩散-反应-平流模型,该模型可以准确模拟组织中锇的测量积累。这些是朝着计算机染色实验和模拟引导优化大样本染色方案迈出的第一步。因此,X 射线辅助染色将成为开发可靠染色程序的有用工具,用于大样本(例如小鼠、猴子或人类的整个大脑)。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在材料的信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您将需要直接从版权所有者获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
糖尿病周围神经病(DPN)的早期检测和管理对于降低相关的发病率和死亡率至关重要。角膜共聚焦显微镜(CCM)促进了角膜神经的成像,以检测DPN的早期和进行性神经损伤。然而,它的更广泛的采用受到手动神经量化的主观性和时间密集型性质的限制。这项研究研究了CCM图像的二元分类,以区分健康对照和DPN个体的二元分类,研究了最先进的视觉变压器(VIT)模型的诊断实用性。还将VIT模型的性能与先前使用CCM图像用于DPN检测的卷积神经网络(CNN)进行了比较。使用大约700 ccm图像的数据集,VIT模型达到了0.99的AUC,灵敏度为98%,特定的92%,而F1得分为95%,超过了先前报道的方法。这些发现突出了VIT模型作为基于CCM的DPN诊断的可靠工具的潜力,从而消除了对耗时的手动图像分割的需求。此外,结果增强了CCM作为检测神经损伤的非侵入性和精确成像方式的价值,尤其是在神经病相关的疾病(例如DPN)中。
1 清华大学生命科学学院、膜生物学国家重点实验室、北京生物结构前沿研究中心、IDG/麦戈文脑研究所、新基石科学实验室,北京 100084。
人类生物学及其复杂系统的复杂性具有推进人类健康,疾病治疗和科学发现的巨大潜力。但是,研究生物相互作用的传统手动方法通常受到生物学数据的含量和复杂性的限制。人工智能(AI)具有分析大量数据集的经过验证的能力,为解决这些挑战提供了一种变革性的方法。本文探讨了生命科学中AI和显微镜的交集,强调了它们的潜在应用和相关挑战。我们提供了有关各种生物系统如何从AI中受益的详细回顾,突出了该域独有的数据类型和标记要求的类型。特别注意显微镜数据,探索处理和解释此信息所需的特定AI技术。通过解决数据异质性和注释稀缺等挑战,我们概述了该领域的潜在解决方案和新兴趋势。主要从AI的角度撰写,本文旨在作为在AI,显微镜和生物学交集的研究人员的宝贵资源。它总结了当前的进步,关键的见解和开放问题,从而促进了鼓励跨学科合作的理解。通过提供对该领域的全面而简洁的综合,本文渴望催化创新,促进跨学科的参与,并加速在生命科学研究中采用AI。