随着全球人口的增长和资源的日益匮乏,农业生产的可持续性和效率提高已成为迫切的需求。纳米技术的飞速发展为这一挑战提供了新的解决方案,特别是纳米粒子在农业中的应用,正逐渐展示出其独特的优势和广阔的前景。然而,各种纳米粒子可以以不同的方式影响植物的生长,通常通过不同的作用机制。除了对植物本身的直接影响外,它们还经常改变土壤的理化性质并调节根际微生物群落的结构。本综述重点关注纳米粒子调节植物生长的各种方式,深入研究纳米粒子与植物之间的相互作用,以及纳米粒子与土壤和微生物群落之间的相互作用。旨在为功能化纳米粒子在农业领域的应用提供全面的参考。
缺血性中风仍然是全球长期残疾的主要原因。虽然精氨酸酶-1(arg1)表达巨噬细胞通常与抗炎性反应和组织修复有关,但我们揭示了ARG1对中风后恢复的意外有害影响。我们证明,渗透巨噬细胞中的Arg1改变了炎症环境,并对中风后的功能恢复产生负面影响。值得注意的是,我们的研究突出了浸润巨噬细胞和常驻小胶质细胞之间的独特相互作用,其中Arg1-表达巨噬细胞调节小胶质细胞功能,影响Peri -Insumct区域的突触修剪和炎症反应。这些发现提供了有关中风恢复的复杂免疫机制的重要见解,并提出了先进的治疗策略。靶向浸润巨噬细胞中的ARG1可能会调节中风后炎症环境,从而改善中风患者的长期结局。
先天淋巴细胞 (ILC) 是组织稳态、炎症和感染免疫的关键调节器。ILC 可快速响应环境因素,例如细胞因子、微生物群和入侵病原体,这些因素可调节其功能和表型。尽管 ILC 是稀有细胞,但它们在屏障表面(例如胃肠道 (GI) 道)富集,并且它们通常对宿主消除病原体的免疫反应至关重要。在宿主-病原体相互作用的另一边,致病菌也有能力调节这些免疫反应。操纵或逃避免疫细胞通常对病原体有利和/或对竞争微生物群有害。在某些情况下,特定的细菌毒力因子或毒素与病原体调节免疫的方式有关。在这篇综述中,我们讨论了最近在了解非细胞毒性 ILC 在肠道细菌感染过程中的作用、这些病原体如何调节免疫反应以及这些对开发新疗法对抗感染的影响方面取得的进展。
臭氧(O3)被添加到您自己的60毫升血液中,并借助紫外线重新灌输,以促进最佳氧合,减少炎症并调节免疫反应。单人节省$ 95小型套件(10疗法)。.�������财务节省$ 95小型套件(10疗法)。.�������财务
T-01(PG)主持人标题:主持人姓名:伯大尼蒙哥马利系:药房大学:贝尔法斯特皇后大学贝尔法斯特联系电子邮件:bmontgomery05@qub.ac.ac.uk合着者和分支机构:Lisa E. J. J. Douglas,Qub; S. Lorraine Martin,Qub。会议主题:药学教育中的AI摘要标题:高度选择性的FURIN抑制对基质金属蛋白酶在囊性纤维化中的影响。摘要文本简介:囊性纤维化(CF)是一种慢性气道疾病,其特征是感染和中性粒细胞炎症的慢性循环,导致与异常基质金属蛋白酶(MMP)表达相关的肺组织损伤。MMP还调节细胞因子活性,该活性在炎症和免疫反应中起关键作用。普遍表达的普洛蛋白转化酶,FURIN可以裂解并激活各种疾病的底物,以包括几个MMP [1]。这项研究的目的是研究新型,高度选择性的脂蛋白抑制剂BOS-857是否会调节下游MMP活性。
f i g u r e 1肠道菌群衍生的代谢产物和免疫系统的相互作用。源自饮食纤维细菌代谢的短链脂肪酸,通过结合膜受体(GPR41,GPR43,GPR109A)或抑制组蛋白脱乙酰基酶(HDACS)抑制炎症。次生胆汁酸是由原发性胆汁酸的细菌转化产生的,与膜TGR5(GPBAR1)或核FXR受体结合并抑制炎症。色氨酸代谢产物通过芳基烃受体(AHR)和妊娠X受体(PXR)受体调节免疫细胞的功能。微生物核衍生的组胺通过组胺2受体(H2R)调节免疫反应。p- cresol硫酸盐(PC),源自L-酪氨酸的微生物代谢,uncouples EGFR -TLR -4交叉说话并减轻炎症。多胺是由摄入的氨基酸代谢产生的,可以通过仍有待确定的受体/途径减少促炎信号传导。微生物群衍生的鞘脂可以通过鞘氨醇1-磷酸受体(S1PR)或与CD1D相互作用来调节免疫反应。
癌症源于癌细胞内部的突变,但疾病进展和治疗反应都受到肿瘤微环境内非突变细胞的强烈调节。过去几年,癌症相关成纤维细胞 (CAF) 的研究得到了极大的扩展。这些细胞通过合成和重塑细胞外基质 (ECM) 以及产生生长因子来调节癌症转移,并影响血管生成、肿瘤力学、药物获取和治疗反应。最近,人们越来越认识到 CAF 调节免疫系统的能力。通过改变 CAF 的数量、亚型或功能来靶向 CAF 是改善癌症疗法的一条途径。然而,该领域的研究面临着许多挑战 — — 尤其是因为 CAF 既有促肿瘤作用,也有抗肿瘤作用。本共识声明是在 2019 年 3 月于冷泉港实验室(美国纽约)举行的班伯里中心会议之后发表的,该会议重点讨论了 CAF 生物学和治疗机会,并进行了一场公开讨论,以确定 CAF 研究面临的挑战并提出前进的方向(方框 1)。在此基础上
癌症源于癌细胞内部的突变,但疾病进展和治疗反应都受到肿瘤微环境内非突变细胞的强烈调节。过去几年,癌症相关成纤维细胞 (CAF) 的研究得到了极大的扩展。这些细胞通过合成和重塑细胞外基质 (ECM) 以及产生生长因子来调节癌症转移,并影响血管生成、肿瘤力学、药物获取和治疗反应。最近,人们越来越认识到 CAF 调节免疫系统的能力。通过改变 CAF 的数量、亚型或功能来靶向 CAF 是改善癌症疗法的一条途径。然而,该领域的研究面临着许多挑战 — — 尤其是因为 CAF 既有促肿瘤作用,也有抗肿瘤作用。本共识声明是在 2019 年 3 月于冷泉港实验室(美国纽约)举行的班伯里中心会议之后发表的,该会议重点讨论了 CAF 生物学和治疗机会,并进行了一场公开讨论,以确定 CAF 研究面临的挑战并提出前进的方向(方框 1)。在此基础上
-最重要的刺激物是葡萄糖。氨基酸、脂肪酸和酮体也会刺激胰岛素的释放。-胰岛除了含有β细胞外,还含有几种细胞类型,这些细胞可以合成和释放肽体液因子(包括胰高血糖素和生长抑素),从而调节胰岛素的分泌。-α-肾上腺素能通路抑制胰岛素的分泌;这是主要的抑制机制。β-肾上腺素能刺激会增加胰岛素的释放。
本书分别分为三个部分:用于生物催化和医疗保健的蛋白质工程。涵盖了更相关的工业酶:脂肪酶,蛋白酶,羧肽酶,葡萄糖酶和葡萄糖酶,果胶分解酶和酶,用于重新固定化合物的生物化。还讨论了溶剂工程的相互作用以调节结构 - 活动关系。一章致力于将蛋白质工程应用于生物传感器。