受到中大西洋山脊和欧洲大陆架的限制,深海橡子式藤壶hirasma hirsutum(Hoek,1883年)居住在东北大西洋深海,在高电流地区经常报告它。在整个成年生活中固定在固体底物上,该物种只能通过浮游营养的nauplius幼虫分散。这项研究报告了来自冰岛东北部盆地内四个地点的Hirsutum的发生,生态和遗传连通性的发生,并列出了与雷克雅内斯山脊轴上的水热域相关的物种的第一个记录。发现与通风孔相关的标本通过突出的棕色黑色壳沉淀物外在与其自然阴影的同种不同。能量色散光谱显示,弹性氧化物是这些壳沉淀物的主要成分。形态测量表明,与通风相关栖息地的标本相比要小。基于线粒体COI和核EF1遗传标记的分子划界有助于物种鉴定,并揭示了种内遗传变异性较低。我们的发现表明,在研究区域内,毛肌的遗传连通性明显,并为生物地理研究提供了第一步。因此,与西大西洋的深海盆地一样,讨论了沿着大西洋山脊的水热影响的栖息地。鉴于据报道与热液活性的隶属关系,我们详细阐述了姊妹物种Bathylasma Corolliborme(Hoek,1883)和Bathylasma Chilasma chilasma chilase&Newman,2018年分别利用南极和太平洋大洋中的等效栖息地。我们记录了Hirsutum的未经认识的生态利基占领,强调需要进一步研究沿着广泛的中大西洋山脊沿着大西洋山脊进行的Bathylasmatid Acorn barnacles,在那里仍有许多生物群落有许多生物群落。
棘冠海星 (COTS) 以在种群爆发期间吞食石珊瑚而破坏珊瑚礁而闻名。先前的研究表明,棘冠海星由四个物种组成,统称为 A. planci 物种复合体。尽管有可用的在线数据库序列,但太平洋 COTS 群(称为 Acanthaster solaris 或 Acanthaster cf. solaris)缺乏全面的形态描述和博物馆凭证标本。因此,本研究旨在使用形态特征和部分 CO1 线粒体基因对位于内格罗斯岛南部的两个地点的 COTS 标本进行表征。获得了大小、颜色、硬度、叉状棘、足尖棘和无足尖棘以及手臂的形态学和形态测量数据。收集了管足进行 DNA 条形码编码。使用 Kimura 2 参数替换模型确定了内格罗斯岛南部和 A. planci 物种复合体的参考序列之间的遗传分化。来自 SNI 的标本具有灰蓝色的无口体色,整个中央圆盘上分布着黑红色的斑点。体色变为灰白色,当动物暴露在空气中时,斑点会变得更红。它们全身有六种刺和微小的叉尾。从内格罗斯岛南部收集的所有 COTS 个体都与该物种复合体的太平洋群融合,标记为 Acanthaster cf. solaris 。内格罗斯岛南部序列和太平洋进化枝之间的种内遗传分歧分别为 0.192 和 0.38%。我们的结果证实了 A. cf. solaris 在菲律宾的存在,并提供了来自印度洋-太平洋地区的物种更全面的形态学描述。该物种的凭证标本存放在西利曼大学罗道夫·B·冈萨雷斯自然历史博物馆。
豆科家族中的氮固定植物(Fabaceae)可能会显示出对生物炭添加的较大正面反应,因为它们可以补偿降低生物芯片污染土壤中N的能力。先前的研究还表明,生物炭可能会对豆类具有特定的发育影响,包括增加的根结点和形态改变。我们检查了在常见的花园实验中,豆类和非葡萄糖热带树对生物炭的生长和形态测量反应。四种豆类物种(Acacia auriculiformis,A。mangium,delonix gegia和pterocarpus santalinus)和四种非葡萄糖(Eucalyptus alba,Melia azedarach,Swietenia azedarach,Swietenia ophopherla和cumini apeps and Atsss and atsssplie and woodss)与A型woode tore andsapling atsapling at a andsapling atsapling atsapling atsapling。 t/ha。总体而言,观察到生物炭添加对树苗性能的强烈积极影响,总生物量平均增加了30%,相对于直径增长,高度显着增加。物种在反应上显示出明显的差异,物种和生物炭处理对生长指标的互动效果很强。豆科植物物种的平均增加略高于非葡萄糖。但是,物种之间的反应是可变的,两个相思物种显示出最大的反应,导致非显着模式。基于文献的热带和亚热带树的荟萃分析同样表明豆类的生物炭反应更高,但也没有统计学意义。此外,实验结果表明物种和生物炭对土壤pH和其他土壤特性的互动效果很大。某些豆类分类群(和其他分类单元)对生物炭的高增长反应,以及对土壤特性的明显物种特异性影响,可能反映了在森林恢复和增强的降级热带景观中,可以利用对火灾扰动的进化反应。关键字:相思,分配,异晶,生物炭,木炭,fafaceae,形态计量学,根淋巴结
摘要:2型糖尿病(T2D)具有复杂的病理生理学,使疾病很难建模。我们旨在开发一种新型模型,用于在体外模拟T2D,包括高血糖,高脂血症和靶向肌肉细胞的胰岛素水平可变升高。我们研究了啮齿动物骨骼(C2C12)和心脏(H9C2)肌管中不同T2D模拟条件下不同T2D模拟条件下不同T2D模拟条件下的胰岛素耐药性(IR),细胞呼吸,线粒体形态测定法和相关功能。生理控制包括5毫米葡萄糖,甘露醇作为渗透对照。对模拟高血糖,将细胞暴露于25 mm的葡萄糖。 进一步的治疗包括胰岛素,棕榈酸酯或两者。 短期(24小时)或长期(96小时)暴露后,我们进行了放射性葡萄糖摄取和线粒体功能测定法。 使用电子显微照片评估线粒体大小和相对频率。 C2C12和H9C2细胞用胰岛素和/或棕榈酸酯和棕榈酸酯和Hg长期处理的IR显示了IR。 C2C12暴露于T2D模拟条件的肌管显示ATP连接的呼吸和备用呼吸能力显着降低,线粒体占据的细胞质区域较少,导致线粒体功能障碍。 相反,H9C2肌管表现出升高的ATP连接和最大呼吸,并增加了线粒体占据的细胞质区域,表明在T2D环境中更好地适应了压力和补偿性脂质氧化。 两种细胞系都表现出在T2D模拟治疗后的肿胀/空泡线粒体肿胀的较高分数。对模拟高血糖,将细胞暴露于25 mm的葡萄糖。进一步的治疗包括胰岛素,棕榈酸酯或两者。短期(24小时)或长期(96小时)暴露后,我们进行了放射性葡萄糖摄取和线粒体功能测定法。使用电子显微照片评估线粒体大小和相对频率。C2C12和H9C2细胞用胰岛素和/或棕榈酸酯和棕榈酸酯和Hg长期处理的IR显示了IR。 C2C12暴露于T2D模拟条件的肌管显示ATP连接的呼吸和备用呼吸能力显着降低,线粒体占据的细胞质区域较少,导致线粒体功能障碍。 相反,H9C2肌管表现出升高的ATP连接和最大呼吸,并增加了线粒体占据的细胞质区域,表明在T2D环境中更好地适应了压力和补偿性脂质氧化。 两种细胞系都表现出在T2D模拟治疗后的肿胀/空泡线粒体肿胀的较高分数。C2C12和H9C2细胞用胰岛素和/或棕榈酸酯和棕榈酸酯和Hg长期处理的IR显示了IR。C2C12暴露于T2D模拟条件的肌管显示ATP连接的呼吸和备用呼吸能力显着降低,线粒体占据的细胞质区域较少,导致线粒体功能障碍。相反,H9C2肌管表现出升高的ATP连接和最大呼吸,并增加了线粒体占据的细胞质区域,表明在T2D环境中更好地适应了压力和补偿性脂质氧化。两种细胞系都表现出在T2D模拟治疗后的肿胀/空泡线粒体肿胀的较高分数。我们稳定且可重现的T2D体外模型迅速诱导了IR,ATP连接呼吸的变化,能量表型的变化以及线粒体形态的变化,与患有T2D患者的肌肉相当。因此,我们的模型应允许研究疾病机制和潜在的新靶标,并允许筛选候选治疗化合物。
为了更好地了解北美和非洲山相关啮齿动物的高海拔高度(海拔3000 m)的功能形态适应,我们使用Microct扫描来获取3D图像和3D形态计量方法来计算内骨体积和颅内长度。这是对北美克里西特小鼠物种的113个低海拔和高海拔种群(两种peromyscus物种,n = 53),以及两个部落的非洲沼泽啮齿动物(五种,五个物种,n = 49)和protaomyini(四种,n = 11)。我们检验了两个不同的假设,即高海拔种群如何在高海拔种群中有所不同:昂贵的组织假设,该假设预测大脑和内部的体积将减少以降低大脑增长和维持大脑的成本;以及脑海中的假设,该假设预测,将作为直接表型效应或适应可容纳大脑肿胀并从而最大程度地减少高度疾病的病理症状的适应性。在校正了颅尺寸的一般异态变化后,我们发现在北美的peromyscus小鼠和非洲层压板(Otomys)大鼠中,高地啮齿动物的核心体积比低较低的啮齿动物较小,与昂贵的组织假设一致。在前组中,peromyscus小鼠,不仅是从高海拔和低海拔的野生捕获的小鼠中获得的,而且还从那些在普通园生实验室条件下从高度或低海拔捕获的父母中获得了颅骨。我们在这些小鼠中的结果表明,脑大小对升高的反应可能具有强大的遗传基础,这反应了相反但对脑量的较弱的影响。这些结果可能表明,选择可以在高海拔高度下减少小型哺乳动物的大脑体积,但是需要进一步的实验来评估该结论的一般性和潜在机制的性质。
摘要背景结直肠癌 (CRC) 是全球癌症相关死亡的主要原因,其进展是由结直肠癌干细胞 (CR-CSC) 驱动的,而结直肠癌干细胞受内源性和微环境信号的调控。白细胞介素 (IL)-30 已被证明对 CSC 活力和肿瘤进展至关重要。它是否参与 CRC 肿瘤发生并影响临床行为尚不清楚。方法通过蛋白质印迹、免疫电子显微镜、流式细胞术、细胞活力和球体形成试验确定 CRC 干细胞和非干细胞中 IL30 的产生和功能。CRISPR/Cas9 介导的 IL30 基因缺失、RNA-Seq 以及在 NSG 小鼠中植入转染或删除 IL30 基因的 CR-CSC 可以研究 IL30 在 CRC 致癌作用中的作用。CRC 样本的生物信息学和免疫病理学强调了临床意义。结果我们证明 CR-CSC 和 CRC 细胞均表达膜锚定 IL30,该 IL30 通过 WNT5A 和 RAB33A 调节其自我更新和/或增殖和迁移,主要通过上调 STAT3 上的 CXCR4 来调节,而 IL30 基因缺失会抑制 CXCR4 以及 WNT 和 RAS 通路。IL30 基因缺失会下调蛋白酶(如 MMP2 和 MMP13)、趋化因子受体(主要是 CCR7、CCR3 和 CXCR4)以及生长和炎症介质(包括 ANGPT2、CXCL10、EPO、IGF1 和 EGF)的表达。这些因素有助于 IL30 驱动的 CR-CSC 和 CRC 细胞扩增,而选择性阻断可消除这种扩增。 IL30 基因缺失的 CR-CSC 表现出降低的致瘤性,并在 80% 的小鼠中产生生长缓慢且转移性低的肿瘤,这些小鼠的存活时间比对照组长得多。对“结肠直肠腺癌 TCGA Nature 2012”集的生物信息学和 CIBERSORTx 以及对临床 CRC 样本中 IL30 表达的形态学评估表明,CRC 和浸润白细胞中缺乏 IL30 与总生存期延长相关。结论 IL30 是一种新的 CRC 驱动因素,因为其失活会禁用致癌途径和多个自分泌环路,从而抑制 CR-CSC 的致瘤性和转移能力。CRISPR/Cas9 介导的 IL30 靶向性的发展可以改善当前的 CRC 治疗前景。
摘要 蛇类是一种独特的渔业产品,因为目测很难区分。只有准确鉴别,才能有效地保护它们。本研究旨在确定来自印度尼西亚巴纽旺宜和沙特阿拉伯吉赞的蛇类的形态和分子特征。形态学鉴定采用计数和形态测量分析,分子鉴定采用 COI 基因分析。本研究中采用形态学分析来识别蛇类,例如 S. tumbil(沙特阿拉伯吉赞)和 S. micropectoralis(印度尼西亚巴纽旺宜)。S. tumbil 在侧线和上尾鳍上没有深褐色斑点,而 S. micropectoralis 在这些部位有 6–9 个斑点。S. tumbil 体型较大,肠道为白色,背鳍棘更多,胸鳍可延伸至腹鳍。而 S. micropectoralis 则不同,它的体型较小,肠道呈黑色,背鳍棘少,胸鳍距离腹鳍较远。分子鉴定显示,来自 Jizan 的样品 100% 为 S. tumbil,来自 Banyuwangi 的样品 99.84% 为 S. micropectoralis。形态学和分子特征可结合起来进行蛇类鉴定,以避免在今后的研究中出现错误鉴定。关键词:爪哇海,分子,形态学,蛇类,红海引言蛇类是除了 Harpadon、Synodus 和 Trachinocephalus 之外的 Synodontidae 科的一个属[1]。这种鱼可以在印度-西太平洋大陆架找到[2]。蛇类身体形态细长圆形,头部形状像蜥蜴[3–4]。由于价格便宜、味道好,蛇鲹被广泛食用[5]。即使在伊朗或马来西亚等其他国家,蛇鲹也被制成鱼糜食用[6]。蛇鲹不仅可用于食用,还可用于食品和制药行业[7]。与保护相关的研究对于了解蛇鲹的生物多样性和保护它们免受人类活动的威胁非常重要。在沙特阿拉伯,过去二十年里,红海沿岸水域的蛇鲹年均捕捞量为 172.45±31.6 吨,并开始出现过度开发
摘要:本研究采用基于知识的模糊分类方法,通过分析从数字高程模型 (DEM) 获得的形态参数 (地形属性) 对城市地区可能的土壤地貌进行分类。以柏林市区为例,比较了两种不同分辨率的 DEM 在寻找地貌、土壤类型之间的特定关系以及这些 DEM 用于土壤制图的适用性方面的潜力。几乎所有的地形参数都是从高分辨率光探测和测距 (LiDAR)-DEM (1 m) 和先进星载热发射和反射辐射计 (ASTER)-DEM (30 m) 获得的,这些参数被用作对选定研究区域内地貌进行分类的阈值,总面积约为 39.40 km 2 。通过将地面点样本作为地面真实数据与分类结果进行比较,评估了两种分类的准确性。基于 LiDAR-DEM 的分类在将城市地区的地貌分类为地貌(子)类别方面表现出良好的效果。总体准确度为 93%,这说明该分类结果令人满意。而基于 ASTER-DEM 的分类准确度为 70%。基于 ASTER-DEM 的分类较为粗糙,需要与土壤形成因素直接相关的更多详细信息来提取地貌参数。在对地貌进行分类时,使用 LiDAR-DEM 分类的重要性尤为明显
理学硕士(技术)地球物理学 GS-101 地质学 I 第一单元:地质学的基本假设、地质学与科学的关系 - 地质学的分支 - 地球的形状和尺寸、地球的结构、成分和起源 - 地壳、地幔、地核的外壳、外部动态过程 - 风化、风化地质工作、侵蚀和剥蚀、侵蚀循环、运输和沉积剂 - 黄土、地貌。沙漠类型。第二单元:地表流水的地质工作 - 溪流、河流及其发展。河流系统 - 蜿蜒、牛轭湖、洪泛平原、准平原和三角洲。地下水的地质工作 - 岩石的渗透性、岩石中的水类型 - 地下水的分类 - 泉水。矿产水-碳酸盐、硫化物和放射性水。喀斯特地貌、山体滑坡、湖泊和沼泽、河口。内部动态过程-构造错位、新构造运动、地震。岩浆作用-火山。海洋地质工作-海洋盆地-世界地貌特征、海底。海水温度、盐度。海洋破坏工作-近岸堆积形式-海洋各区域的沉积。海洋沉积物的分布。第三单元:地貌学的基本概念-地貌过程-地貌分布-排水模式-发展。流域、流域的形态分析。山坡的元素-山麓、山脊。与岩石类型、古河道、地下河道有关的地貌。土壤类型及其分类。印度主要地貌过程的演变。海洋地貌过程、沿海形态过程。野外和实验室地图比例尺、地形图、专题地图、地形和地貌剖面图。第四单元:火成岩、变质岩和沉积岩的结构、结构和化学分类及起源-岩石形成、花岗岩化。伟晶岩、金伯利岩和冈底岩的岩石学特征 - 沉积结构 - 砾岩、砂岩、页岩、石灰岩的岩石学特征。白云岩化过程。变质作用 - 页岩、千枚岩、片岩、片麻岩、大理石石英岩和麻粒岩的结构分类。第五单元:矿物科学、矿物的物理和光学特性。长石、云母、辉石、角闪石、橄榄石、石英和石榴石组的分类、结构和化学性质。粘土矿物、原生元素的成因和化学性质。4.5.晶体学要素、晶体轴、晶体的对称形式和晶体的分类。书籍:l. 物理地质学,G.Gorshkov,A.Yakushova 2。物理地质学,A.K.Datta 3。地质学教科书,P. K Mukherjee。岩石学原理,G.W.Tyrell。Rutleys 矿物学,H.M.Read 6。物理地质学,Arthur Holmes
淋巴结对于产生肿瘤特异性效应反应至关重要,因为它们包含所有必要的细胞类型,这些细胞类型组织在特定的微解剖区室中,以有效启动适应性免疫反应。然而,引流肿瘤的淋巴结通常是大多数实体癌的第一个转移部位,这反映了它们在疾病进展过程中的功能抑制。本研究主题“肿瘤引流淋巴结”中的文章深入探讨了肿瘤引流淋巴结 (TDLN) 的功能状态与患者生存率之间的联系,以及它们增强免疫疗法反应的潜力。正如 Lei 等人所综述的,TDLN 提供了重要的预后信息,因为通过组织学检测到其中的转移性癌细胞可以了解疾病进展。从历史上看,淋巴结转移被视为侵袭性肿瘤的征兆。然而,最近的研究表明,癌细胞可以离开淋巴结并直接在远处器官中定植 (1,2)。Kooreman 等人的研究。这表明 TDLN 的形状可能对不同乳腺癌亚型具有预后意义,与癌细胞的存在无关。淋巴结是豆形器官,具有显著的可塑性,会因衰老、免疫细胞扩增和肿瘤生长等因素而发生结构变化。Kooreman 等人进行的形态测量,特别是无癌 TDLN 长轴与短轴的比率,被发现与原发肿瘤中肿瘤内滤过淋巴细胞 (TIL) 的存在以及总体生存期结果相关。令人信服的数据表明,细长的淋巴结预示着 TIL 较少,以及总体生存率和无病生存率较差。相反,形状更圆的淋巴结可能具有更好的免疫功能,因为它们与 TIL 的存在较高有关。这项研究还进一步表明,随着个体年龄的增长,淋巴结中的正常组织会逐渐被脂肪取代,这可能表明淋巴结功能下降 ( 3 )。探索用于乳腺癌诊断的磁共振成像是否也能根据淋巴结脂肪沉积和形状预测患者的预后和治疗反应将很有价值。血液中的循环幼稚淋巴细胞通过高内皮小静脉 (HEV) 进入淋巴结。在副皮质中,T 细胞与树突状细胞接触,并
