(a) 对于技术提案,必须以经认证的财务报表和银行详细信息副本的形式提供顾问的财务状况证明,如 TECH-2 表格 A 部分所述,随后提供顾问组织的简要说明和顾问近期类似经验的概述,如 TECH-2 表格 B 和 C 部分所述。对于每项任务,概述应注明参与的分包顾问/专业人员的姓名、任务期限、合同金额和顾问的参与情况。应仅提供顾问作为公司或合资企业中的主要公司之一与客户合法签约的任务的信息。由私人或通过其他咨询公司工作的专业人员个人完成的任务不能声称是顾问的经验或顾问同事的经验,但专业人员本人可以在简历中声称。如果客户要求,顾问应准备好证实所声称的经验。
等效磁网络(EMN)方法似乎是电动机中磁场的一种更有效的分析方法,比等效磁路方法(EMC)[11]和比有限元方法(FEM)相比,相结合了更高的计算精度和更快的计算速度。W. Shi等。研究了具有V形磁铁结构的PMSM的EMN,该结构可以准确计算磁场分布并模拟电动机的抗磁力化能力[12]。J. Zhang等。 提出了双层磁铁结构永久磁铁同步不情愿电动机,并建立了其EMN模型,该模型可以准确计算电动机的气隙通量密度分布,并用于转子结构的设计和优化[13]。 尽管如此,[12]和[13]中的EMN模型不可用于计算绕道通量,电动力(EMF)和扭矩波形以及转子旋转。 然后,介绍了根据转子位置修改EMN在定子和转子之间的连接的动态EMN模型,以解决此问题。 H. Kwon等。 研究并建立了具有表面无磁体结构的PMSM的动态EMN模型,该模型可以获得与FEM相似的磁场计算结果[14]。 G. Liu等。 研究了具有单层V形磁体结构的PMSM的动态EMN模型。 其正确性通过FEM和实验验证[15]。 但是,在本文中对拟议的DVMPMSM的动态EMN模型没有相关的研究。J. Zhang等。提出了双层磁铁结构永久磁铁同步不情愿电动机,并建立了其EMN模型,该模型可以准确计算电动机的气隙通量密度分布,并用于转子结构的设计和优化[13]。尽管如此,[12]和[13]中的EMN模型不可用于计算绕道通量,电动力(EMF)和扭矩波形以及转子旋转。然后,介绍了根据转子位置修改EMN在定子和转子之间的连接的动态EMN模型,以解决此问题。H. Kwon等。研究并建立了具有表面无磁体结构的PMSM的动态EMN模型,该模型可以获得与FEM相似的磁场计算结果[14]。G. Liu等。研究了具有单层V形磁体结构的PMSM的动态EMN模型。其正确性通过FEM和实验验证[15]。但是,在本文中对拟议的DVMPMSM的动态EMN模型没有相关的研究。在[16]中,动态EMN模型用于表面安装的PMSM的多目标优化,这对电动机的快速设计有益。
自计算机出现以来,人类一直在寻求富有表现力、直观且通用的计算机输入技术。虽然已经开发了多种模式,包括键盘、鼠标和触摸屏,但它们需要与中间设备进行交互,这可能会受到限制,尤其是在移动场景中。基于手势的系统利用摄像头或惯性传感器来避免使用中间设备,但它们往往只在不被遮挡或明显的动作中表现良好。几十年来,人们一直在设想脑机接口 (BCI),通过允许仅通过思维向计算机输入来解决接口问题。然而,高带宽通信仅使用为单个个体设计的解码器的侵入式 BCI 进行了演示,因此无法扩展到普通大众。相比之下,肌肉中的神经运动信号可以访问细微的手势和力量信息。在这里,我们描述了一种非侵入式神经运动接口的开发,该接口允许使用表面肌电图 (sEMG) 进行计算机输入。我们开发了一个高度灵敏且强大的硬件平台,该平台易于佩戴/脱下,可感知手腕上的肌电活动并将有意的神经运动命令转换为计算机输入。我们将此设备与一个经过优化的基础设施配对,该基础设施可从数千名同意的参与者那里收集训练数据,这使我们能够开发通用的 sEMG 神经网络解码模型,该模型适用于许多人,而无需对每个人进行校准。未包括在训练集中的测试用户在连续导航任务中以每秒 0.5 次目标获取、在离散手势任务中以每秒 0.9 次手势检测和每分钟 17.0 个调整字的速度展示手势解码的闭环中值性能。我们证明,通过为个人个性化 sEMG 解码模型,输入带宽可以进一步提高 30%,预计未来人类和机器将共同适应,提供无缝翻译人类意图的功能。据我们所知,这是第一个直接利用生物信号的高带宽神经运动接口,具有跨人群的高性能开箱即用泛化功能。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是此预印本版本的版权持有人,该版本发布于2025年2月10日。 https://doi.org/10.1101/2025.02.09.637302 doi:Biorxiv Preprint
本文根据图像处理技术介绍了一种新的能源车辆驾驶控制系统。通过处理和分析道路图像,新的能源驾驶控制系统能够识别道路元素,计划路线并计算其方向和速度参数。为了改善系统在各种环境中的适用性,它首先将道路图像分为两类:路面和其他物体。然后,它使用手动迭代方法来确定最佳阈值,并建议一种自适应阈值改进方法。第二,该系统将进行道路元素的特征提取,包括样本类型,例如坡道,直路,曲线,十字路口和障碍物。通过辅助特征提取和样品类型表征,系统实现了各种道路元素的识别和分类。最终,系统执行了图像捕获,预处理和边界提取。然后使用路径计划和道路中心线拟合来实现车辆导航。该技术确定了角参数,并在车辆方向和速度参数测试期间提供了车辆的精确导航方向。新能量汽车的驾驶控制系统非常适用且实用,为这些车辆在复杂的道路条件下安全运行提供了有效的技术援助。
简介:中风后,约 40% 的幸存者在日常生活中依赖他人,尤其是严重的运动障碍。脑机接口 (BCI) 已被证明可有效改善中风后的运动恢复,但这种效率仍远未达到临床医生和患者所期望的临床突破所需的水平。虽然已经确定了改进的技术手段(例如传感器和信号处理),但如果患者和临床医生不能或不想使用,完全优化的 BCI 是毫无意义的。我们假设,提高 BCI 的可接受性将降低患者的焦虑水平,同时提高他们在手术中的积极性和参与度,从而最终有利于学习和运动恢复。换句话说,可接受性可以作为提高 BCI 效率的杠杆。然而,基于可接受性/接受度文献的 BCI 研究尚不完善。因此,我们的目标是在中风后运动康复的背景下对 BCI 的可接受性进行建模,并确定其决定因素。
目的:检测未患严重新生儿脑损伤的早产儿暴露于围产期炎症(即临床绒毛膜羊膜炎或早发性新生儿感染)与 30 个月矫正月龄 (CA) 时的神经发育结果之间的关联。设计:来自法国地区临床随访队列 (SEVE 网络) 的横断面研究。患者:164 名未患严重脑损伤(即 III 级和 IV 级脑出血和囊性脑室周围白质软化)且未患晚发性新生儿炎症(即晚发性新生儿感染和坏死性小肠结肠炎)的存活新生儿,于 2011 年 11 月至 2015 年 6 月期间出生,胎龄不足 33 周,并已加入 SEVE 网络。主要结果测量:由同一神经心理学家在 CA 30 个月时测量修订的 Brunet-L ezine 量表及其四个指数的总体发育商 (DQ) 评分。结果:经过多变量分析,未发现围产期炎症暴露与总体 DQ 评分的改变有显著相关性(系数 -1.7,95% CI -4.8 至 1.3;p = 0.26)。围产期炎症暴露与粗大运动功能 DQ 评分下降(系数 -6.0,95% CI -9.9 至 -2.1;p < 0.01)和社交能力 DQ 评分下降(系数 -5.1,95% CI -9.2 至 -0.9;p = 0.02)有关。语言和视觉空间协调 DQ 评分不受围产期炎症的影响。结论:未发生严重新生儿脑损伤的早产儿接触围产期炎症与 30 个月 CA 时运动和社交能力下降有独立相关性。© 2020 作者。由 Elsevier Ltd 代表欧洲儿科神经病学协会出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4. 0/)。
Asanuma, C.、Thach, WT 和 Jones, EG (1983)。猴子丘脑腹侧区小脑末梢分布及其与其他传入末梢的关系。《脑研究评论》,5 (3),237 – 265。https://doi.org/10.1016/0165-0173(83)90015-2 Behrens, TEJ、Johansen-Berg, H.、Woolrich, MW、Smith, SM、Wheeler-Kingshott, C.、Boulby, PA、Barker, GJ、Sillery, EL、Sheehan, K.、Ciccarelli, O.、Thompson, AJ、Brady, JM 和 Matthews, PM (2003)。使用扩散成像对人类丘脑和皮质之间的连接进行非侵入性映射。 Nature Neuroscience,6 (7),750 – 757。https://doi.org/10.1038/nn1075 Benabid, AL, Pollak, P., Hoffmann, D., Gervason, C., Hommel, M., Perret, JE, de Rougemont, J., & Gao, DM (1991)。通过长期刺激丘脑腹侧中间核长期抑制震颤。The Lancet,337 (8738),403 – 406。https://doi.org/10. 1016/0140-6736(91)91175-T Chen, H., Hua, SE, Smith, MA, & Lenz, FA (2006)。人类小脑丘脑破坏对伸手适应性控制的影响。大脑皮层,16 (10),1462 – 1473。Chopra, A.、Klassen, BT 和 Stead, M. (2013)。深部脑刺激在治疗特发性震颤方面的当前临床应用。神经精神疾病和治疗,9,1859 – 1865。https://doi.org/10.2147/NDT.S32342 Crowell, AL、Ryapolova-Webb, ES、Ostrem, JL、Galifianakis, NB、Shimamoto, S.、Lim, DA 和 Starr, PA (2012)。运动障碍中感觉运动皮层振荡:皮层电图研究。 Brain , 135 (2), 615 – 630. https://doi.org/10.1093/brain/awr332 Cury, RG, Fraix, V., Castrioto, A., Perez Fernandez, M., Krack, P., Chabardes, S., Seigneuret, E., Benabid, A.-L., & Moro, E. (2017). 丘脑深部脑刺激治疗帕金森病震颤,基本
人类的视觉-运动协调是运动控制的基本功能,需要多个大脑区域的相互作用。了解皮层-运动协调对于改善运动障碍的物理治疗具有重要意义。但其潜在的瞬态神经动力学仍然很大程度上未知。在本研究中,我们应用基于特征向量的动态网络分析方法来研究视觉-运动协调任务下从脑电图 (EEG) 信号计算的功能连接并识别其亚稳态动力学。我们首先在模拟网络上测试了这种信号处理以与其他动力学方法进行比较,表明基于特征向量的动态网络分析能够正确提取演化网络的动态特征。随后,将基于特征向量的分析应用于视觉-运动协调实验下收集的EEG数据。在对参与者的EEG研究中,拓扑分析和基于特征向量的动态分析的结果都能够区分视觉跟踪任务的不同实验条件。通过动态分析,我们表明,通过研究功能连接的亚稳态动态可以区分不同的视觉运动协调状态。
图4。在训练阶段应用的实验4级范式。用户必须执行每个控制任务(RH,MUS,LAN)5 s。每个任务都与将任务图标与在适当时间瞬间从游戏中提取的图像相结合而制作的图像相关联。对应于无控制任务(NC)的其余间隔的总持续时间为12 s。在此休息间隔的5秒钟后,屏幕上出现了一个绿十字,持续2 s,以提高飞行员的浓度。