18医学遗传学,意大利锡耶纳大学,锡耶纳大学医院19医学遗传学,锡耶纳大学,意大利锡耶纳大学20 Med Biotech Hub和能力中心,医学生物技术系,锡耶纳大学,锡耶纳大学,意大利锡耶纳大学,意大利21分子与发展学系, 53100,意大利锡耶纳
此预印本版的版权持有人于2025年1月28日发布。 https://doi.org/10.1101/2025.01.27.635175 doi:Biorxiv Preprint
1 大学。格勒诺布尔阿尔卑斯, CNRS, 格勒诺布尔 INP, LJK, 38000 格勒诺布尔, 法国 2 雷恩大学 2, LP3C EA 1285, 35000 雷恩, 法国 3 大学格勒诺布尔阿尔卑斯大学。Savoie Mont Blanc,LIP/PC2S,38000 Grenoble,法国 这项工作得到了 Pôle Grenoble Cognition 和法国国家研究机构在“Investissements d'avenir”计划 ANR-15-IDEX-02 和 ANR-11-LABX-0025-01 框架内的支持。我们感谢 Alisée Bruno 在实验 1 中对数据收集的帮助。*通讯作者:Annique Smeding,BP 1104,73011 Chambéry cedex,法国。电话:+33 4 79 75 85 89;电子邮件:annique.smeding@univ-smb.fr Jean-Charles Quinton,LJK - Bâtiment IMAG, 700 Avenue Centrale, 38401 Domaine Universitaire de Saint-Martin-d'Hères,电话:+33 4 57 42 17 78,电子邮件:quintonj@univ-grenoble-alpes.fr
在过去的几十年中,人们培育出了大量携带与神经系统相关的基因突变的转基因小鼠。它们可以用于评估基因-行为关系,揭示单个基因与复杂行为之间的联系,例如活动 [ 1 ]、焦虑 [ 2 ]、攻击性 [ 3 ] 以及学习和记忆 [ 4 , 5 ]。突变小鼠已成为模拟特定人类遗传条件和各种脑部疾病的首选动物模型。随后出现了对高通量、标准化和经过验证的行为筛选方法的需求。最初,小鼠行为通常使用主要为大鼠开发的任务来评估。然而,与大鼠不同,成年小鼠难以处理并且难以适应人类实验者。因此,将小鼠引入测试室会造成相当大的压力,从而影响结果。此外,隔离小鼠(无论是为了更容易处理还是在家中笼中测试)都是可能影响行为的长期压力源 [ 6 ]。因此,迫切需要减少由环境因素、人为操作以及标准化程度不高的饲养和实验方案所造成的变异性。为了获得标准化的评分方法,行为神经科学家至少采用了三种方法:(i)使用全自动
metatranscriptome(metat)测序是分析微生物组动态代谢功能的关键工具。除了分类信息外,Metat还提供了宿主和微生物种群的实时基因表达数据,从而允许对微生物组及其宿主的功能(酶)输出的真实定量。有效且准确的元数据分析的主要挑战是从这些复杂的微生物混合物中去除高度丰富的rRNA转录本,这些混合物可以在数千个种类中进行数量。不管rRNA耗竭的方法论如何,基于微生物组的分类学含量的RRNA去除探针的设计通常需要大量的单个探针,这使得这种方法使商业上生产,昂贵且经常在技术上不可行。在先前的工作[1]中,我们使用仅基于序列丰度的设计策略为人类粪便样品设计了一组耗竭探针,完全不可知的是存在的微生物物种。在这里,我们表明,与小鼠盲肠样品一起使用时,基于人类的探针效果较差。然而,将其他rRNA耗竭探针专门针对盲肠含量提供了更高的效率和一致性,以用于对小鼠样品的元分析。
胆碱的L-氨基酸定义高脂肪饮食(CDAA-HFD)小鼠模型被广泛用于临床前代谢功能障碍 - 相关的脂肪性肝炎(MASH)研究。为了验证CDAA-HFD小鼠,我们评估了疾病的进展和对饮食和药理学干预的反应,该饮食和药理学干预措施,Lani-Branor,Ela Flanor,obeticholic Acid,Obeticholic Acid(OCA),Firsocostat和Resmetirom。疾病表型在C57BL/6J小鼠中进行的CDAA-HFD喂入3 - 20周,并使用MASLD人类接近评分(MHP)进行排名。semaglutide,lani纤维,伊拉纤维,OCA,FIFSOCOSTAT或RESMETIRIROM作为8 WK的治疗干预措施,在6周的CDAA-HFD喂养后开始。semaglutide和lani-branor作为9周的早期(预防性)治疗进一步评估,在CDAA-HFD饮食喂养后开始3周。此外,在6周CDAA-HFD喂养后,对8周的饮食干预(Chow逆转)的好处也具有特征。CDAA-HFD小鼠表现出一种非肥胖表型,具有快速的发作和泥土和纤维化的进展,与人类土豆肉纤维化的高度相似性以及20周饮食诱导后的肿瘤发育。semaglutide和lanifinor在预防时会部分逆转纤维化,但不作为治疗干预措施。Ela Finor是改善纤维化的唯一介入药物疗法。相比之下,Chow-verversal导致CDAA-HFD小鼠的肝脏炎症和纤维化的改善,导致脂肪变性完全消退。CDAA-HFD小鼠适合直接针对肝脂质代谢,炎症和纤维化的候选药物。CDAA-HFD小鼠概括了先进的Mash的组织学标志,但是,在没有临床翻译肥胖的肥胖糖质代谢表型的情况下,进行性严重纤维化。药物干预的时机对于确定模型中的抗邻二抗药物效率至关重要。
使用小鼠ICM胚胎Beatrice F. Tan 1,Olivier J.M.Schäffers1,2,Sarra Merzouk 1,Eric M. Bindels 3,Danny Huylebroeck 4,Joost Gribnau 1,4,CathérineDupont1,†, * 1 1 1 1, * 1 1, * 1,荷兰鹿特丹,伊拉斯mus大学医学中心,伊拉斯特大学医学中心。2荷兰鹿特丹伊拉斯mus大学医学中心妇产科和胎儿医学系。3荷兰鹿特丹伊拉斯mus大学医学中心血液学系。4荷兰鹿特丹伊拉斯mus大学医学中心的细胞生物学系。†最后一位作者。*通讯作者:c.dupont@erasmusmc.nl。抽象的基于干细胞的胚胎模型是研究早期胚胎发生的有希望的替代方法。我们介绍了两个不同的模型,以复制小鼠胚胎发育过程中胚胎内胚层和epiblast之间的动力学。诱导性GATA6(I GATA6)胚胎体(EB),仅源自I GATA6胚胎干细胞(ES)细胞,对于对原始内胚层的位置依赖性发展进行建模非常有价值。内部细胞质量(ICM)胚胎,相反,通过汇总“野生型”和i GATA6 ES细胞形成,准确,以可比的PACE模拟在E7.5到E7.5的体内发育中的相当PACE模拟。值得注意的是,ICM胚胎模型细胞分类,并通过玫瑰花结状阶段,将层级从幼稚到启动多能的过渡。此外,在该模型中缺乏胚胎外胚层样细胞,将表皮和内脏内胚层引导到前发育的命运。因此,I GATA6 EB和ICM胚胎是在小鼠早期胚胎发育过程中对细胞命运决策的理解的强大工具。引言小鼠的植入前发育标志着两个细胞命运决策,每种都会导致谱系隔离[1]。在胚泡中,第一个隔离发生在胚胎第3-3.5(e3-e3.5)的情况下,并形成了滋养型剂(TE)和内部细胞质量(ICM)。随后在ICM中随后发生了第二个隔离,并形成了原始内胚层(PRE,低纤维细胞)和层细胞。在第二个决策中运行的机制涉及位置效应,细胞分选和凋亡。随着发育的进展,PRE不仅形成顶叶内胚层,还会产生内脏内胚层(VE),当后者从幼稚到启动的多能状态过渡时,围绕着层状的内胚层(VE)。pre/ve与层细胞之间的细胞间通信以及对其的相互解释调节了这两个谱系中每一个的发展。然而,沿子宫中小鼠小鼠胚胎的差可及性,了解胚胎发生的这些阶段的参与者和基因调节网络的变化受到了复杂,重叠和冗余的分子机制的阻碍。基于干细胞的胚胎模型已成为研究哺乳动物胚胎早期发育的有吸引力的替代方法,但并非没有局限性。类囊体的发育潜力较差,因为它们的PRE(E3.5-E4)的形成仍然很困难,并且取决于各种培养添加剂[2,11]。小鼠整合性胚胎模型,例如胚胎[2-4]和ETX胚胎[5-10],它们分别模拟了植入前和植入后发育,无法准确复制E3-E5.5之间的体内发育阶段。ETX胚胎在发育的特定阶段仍处于装配模式,因此对于从E5.5开始建模和研究胚胎发生最有用。此外,在这两个综合胚胎模型中达到高效率都构成了重要的
小鼠和人类皮质突触的超微结构膜动力学 Chelsy R. Eddings 1、Minghua Fan 2、Yuuta Imoto 1#、Kie Itoh 1#、Xiomara McDonald 1、Jens Eilers 3、William S. Anderson 4、Paul F. Worley 2,5、Kristina Lippmann 3*、David W. Nauen 5,6**、Shigeki Watanabe 1,2,7*** 1 约翰霍普金斯大学细胞生物学系,美国马里兰州巴尔的摩 21205。 2 Solomon H. Snyder 约翰霍普金斯大学神经科学系,美国马里兰州巴尔的摩 21205。 3 莱比锡大学医学院 Carl-Ludwig-生理学研究所,德国莱比锡 04103。 4 美国马里兰州巴尔的摩市约翰霍普金斯医院神经外科部,邮编 21205。5 美国马里兰州巴尔的摩市约翰霍普金斯医院神经内科部,邮编 21205。6 美国马里兰州巴尔的摩市约翰霍普金斯医院病理科,邮编 21205。7 美国马里兰州巴尔的摩市约翰霍普金斯大学细胞动力学中心,邮编 21205。# 目前就职于美国田纳西州孟菲斯市圣犹大儿童研究医院发育神经生物学部,邮编 38105。通讯员:Kristina.Lippmann@medizin.uni-leipzig.de、dwnauen@jhmi.edu、shigeki.watanabe@jhmi.edu 负责人:Shigeki Watanabe、shigeki.watanabe@jhmi.edu 摘要 活体人脑组织为了解突触传递的生理学和病理生理学提供了独特的机会。研究仅限于解剖学、电生理学和蛋白质定位——而诸如突触囊泡动力学等关键参数则无法可视化。在这里,我们利用瞬时冷冻时间分辨电子显微镜来克服这一障碍。首先,我们用急性小鼠脑切片验证该方法,以证明可以刺激与电场平行的轴突产生钙信号。接下来,我们表明超快内吞作用被诱导并且可以在小鼠和人类脑切片中被捕获。至关重要的是,在这两个物种中,一种对超快速内吞至关重要的蛋白质 Dynamin 1xA (Dyn1xA) 位于活性区外围区域,即假定的内吞区,这表明小鼠和人类之间可能存在一种机制保守性。这种方法有可能揭示有关完整人脑切片中突触膜运输的动态高分辨率信息。关键词突触传递、时间分辨电子显微镜、冷冻、皮质、高压冷冻、突触囊泡内吞、超快速内吞、人类新皮质、受激辐射损耗显微镜、Dynamin 1xA、小脑、双光子钙成像
由无处不在的启动子驱动的记者。AAV9-PHP.B矢量(AAV-CBA-EGFP)在CBA启动子下表达EGFP 115(绿色),有效地转导了内毛细胞(IHC),外毛细胞(OHCS)116(Magenta)(Magenta),辅助细胞和其他小鼠Cochlea中的细胞。IHC和OHC通过117个荧光腓骨(Magenta)鉴定。 f。用AAV载体转导的细胞在GRES(AAV-GRE-EGFP)的控制下表达EGFP标记基因118。 值得注意的是,当GRE控制119表达时,在毛细胞中未观察到EGFP。 g,h。用AAV载体转导的细胞在调节元件的控制下表达120 mmgjb2.ha(g)或hsgjb2.ha(h)。 比例尺:10μm(E,F),30 121 µm(G,H)。 122IHC和OHC通过117个荧光腓骨(Magenta)鉴定。f。用AAV载体转导的细胞在GRES(AAV-GRE-EGFP)的控制下表达EGFP标记基因118。值得注意的是,当GRE控制119表达时,在毛细胞中未观察到EGFP。g,h。用AAV载体转导的细胞在调节元件的控制下表达120 mmgjb2.ha(g)或hsgjb2.ha(h)。比例尺:10μm(E,F),30 121 µm(G,H)。122
在数十年的AD研究中,动物模型是了解AD发病机理和测试治疗方法的调节机制的重要工具[9]。最常用的实验AD动物模型是基于啮齿动物的,并且通过过表达与家族性AD有关的遗传突变来产生转基因小鼠模型[10,11]。这些小鼠模型基本上显示了AD患者的某些关键组织病理学,但它们都没有捕获AD病理,生化和行为特征的各个方面[12,13]。此外,大多数基于遗传突变的家族性AD小鼠模型代表了人类AD患者永远不会发生的极端情况。因此,迫切需要模仿晚期AD的适当模型来弥合基础研究和临床翻译之间的差距。