疏水性是由纤维真菌产生的小两亲性细胞外蛋白。它们是表面活性蛋白,它们的功能主要与它们在疏水 - 亲水性接口处自我组装成两亲性单层的能力有关。取决于其水文模式和纯粹的要求,它们被分为I类和II类;两者都在整个序列中均表现出八个保守的半胱氨酸,形成了四个拆桥,它们产生了四个循环,可以使蛋白质以其单体和折叠形式稳定。I类杂菌环比II类杂菌环更扩展,从而导致不同表面的组装差异,并伴随着蛋白质结构的构象变化。 在单体杂素糖基化形式中,疏水素富含β-地表结构,同时在水中组装时 - 空气界面在其结构中增加了β-单表的含量,并且与水的界面和疏水固体在界面上,以及诸如TE的杂化固体,例如TE的形成也诱导了α-α-α-α-α-α-α-elix -Helix -Helix -Helix -Helix -Helix -Helix -Helix -a -Helix -a -Helix -α-固定结构。 由I类生成的单层是稳定的结构,称为纤维或rodlets,II类仅产生聚集体。 I类在其序列中呈现糖基化链。这会导致α-螺旋结构的形成,从而促进有序的组件,这需要它们的稳定性和高不溶性。 原纤维可以与三氟乙酸和甲酸分离,而三乙酸可以展开蛋白质,而60%乙醇和2%十二烷基硫酸钠溶液解散了II类聚集体。I类杂菌环比II类杂菌环更扩展,从而导致不同表面的组装差异,并伴随着蛋白质结构的构象变化。在单体杂素糖基化形式中,疏水素富含β-地表结构,同时在水中组装时 - 空气界面在其结构中增加了β-单表的含量,并且与水的界面和疏水固体在界面上,以及诸如TE的杂化固体,例如TE的形成也诱导了α-α-α-α-α-α-α-elix -Helix -Helix -Helix -Helix -Helix -Helix -Helix -a -Helix -a -Helix -α-固定结构。由I类生成的单层是稳定的结构,称为纤维或rodlets,II类仅产生聚集体。I类在其序列中呈现糖基化链。这会导致α-螺旋结构的形成,从而促进有序的组件,这需要它们的稳定性和高不溶性。 原纤维可以与三氟乙酸和甲酸分离,而三乙酸可以展开蛋白质,而60%乙醇和2%十二烷基硫酸钠溶液解散了II类聚集体。I类在其序列中呈现糖基化链。这会导致α-螺旋结构的形成,从而促进有序的组件,这需要它们的稳定性和高不溶性。原纤维可以与三氟乙酸和甲酸分离,而三乙酸可以展开蛋白质,而60%乙醇和2%十二烷基硫酸钠溶液解散了II类聚集体。
科学问题解决涉及在应用专家知识的同时综合信息。我们引入了 CURIE,这是一个科学的长上下文理解、推理和信息提取基准,用于衡量大型语言模型 (LLM) 在协助科学家进行现实实验和理论工作流程方面的潜力。该基准引入了由六个学科的专家策划的十项具有挑战性的任务:材料科学、凝聚态物理、量子计算、地理空间分析、生物多样性和蛋白质。我们在 CURIE 中的任务上评估了一系列封闭和开放的 LLM,这些任务需要领域专业知识、对长上下文信息的理解和多步骤推理。虽然 Claude-3 在各个领域都表现出一致的高理解力,但流行的 GPT-4o 和 command-R + 在蛋白质测序任务上表现不佳。总的来说,所有模型都有很大改进空间。我们希望这项工作能够指导未来科学领域 LLM 的发展。
离线增强学习的最新进展(RL)(Levine等人,2020年)使用预采用的数据集为现实世界中的培训政策开辟了可能的可能性(Kalashnikov等人。,2018年; Rafailov等。,2021; Kalashnikov等。,2021),自然语言处理(Jaques等人,2019年),教育(De Lima and Krohling,2021年),电力供应(Zhan等人,2022)和医疗保健(Guez等人,2008年; Shortreed等。,2011年; Wang等。,2018年;基利安等人。,2020)。虽然大多数离线RL研究都集中在单任务问题上,但是在许多实际情况下,多个任务是相关的,并且通过利用所有可用数据共同学习多个任务是有益的(Kalashnikov等人。,2018年; Yu等。,2021,2022; Xie and Finn,2022)。在这种情况下,一种流行的方法是多任务表示学习,该代理的目的是通过在相关任务之间提取共享的低维表示功能来解决问题,然后在此通用表示上使用简单功能(例如线性)来解决每个任务(Caruana,1997; Baxter,2000)。尽管多任务表示学习取得了经验成功,尤其是在增强学习在降低样品复杂性方面的功效方面的实现(Teh等人,2017年; Sodhani等。,2021; Arulkumaran等。,2022),对其的理论理解仍处于早期阶段(Brunskill和Li,2013年; Calandriello等人。,2014年; Arora等。,2020年; Eramo和Al。,2020年;胡和al。,2021; lu和al。,2021; Pacchiano的磨坊,2022年)。虽然
本文表明,一次学习几个艰巨的任务可能比单独学习这些相同的任务更容易。实际上,训练信号提供的每个任务提供的信息都是针对其他任务的域特异性电感偏差。经常以相关任务学习。当不这样做时,创建其他任务是直接的。对于许多领域,通过收集额外的教学信号获得归纳偏见可能比从人类专业知识中获得的特定领域偏见的传统方法更实用。我们称这种方法称为多任务处理(MTL)。由于诱导学习者的大部分力量直接遵循其归纳偏见,因此多任务学习可能会产生更多的力量学习。提供了多任务连接主义学习的经验示例,其中通过同时培训一个网络来改进学习,同时培训一个网络。多任务决策树感应也概述了。
非平衡效应可能会对执行热力学任务(例如制冷或热泵)的热力器的性能产生深远影响。通过量子相干性提高热力学操作的性能的可能性特别感兴趣,但需要在量子水平上对热量和工作进行足够的表征。在这项工作中,我们证明了在为三端机器供电的热储层中少量连贯性的存在,可以使组合和混合模式的外观和混合模式组合在一起,可以同时执行单个热力学任务,或者同时执行多个热力学任务。我们确定了这种具有连贯的操作模式的性能,以获得其功率和效率。在混合方案的情况下,热水浴中的一致性存在可以增加功率,同时保持高效率。另一方面,在联合政权中,出现了一种对比行为,使连贯性对功率输出和效率产生不利影响。
本文提出了一种用于空中操纵器的控制方案,该方案允许解决不同的运动问题:最终效应器位置控制,最终效应器轨迹跟踪控制和路径遵循控制。该方案具有两个级联的控制器:i)第一个控制器是基于数值方法的最小范数控制器,它仅通过修改控制器引用就可以解决三个运动控制问题。另外,由于空中操纵器机器人是一个冗余系统,即,完成任务具有额外的自由度,可以按层次顺序设置其他控制目标。作为控制的次要目标,提议在任务过程中维持机器人臂的所需配置。ii)第二个级联控制器旨在补偿系统的动力学,其中主要目的是将速度误差驱动到零。提出了机器人系统的耦合动态模型(己谐和机器人臂)。该模型通常是根据力和扭矩的函数开发的。但是,在这项工作中,它是参考速度的函数,这些速度通常是这些车辆的参考。通过相应的稳定性和鲁棒性分析给出了提出的对照算法。最后,为了验证控制方案,在部分结构化的环境中进行实验测试,其空中操纵器与空中平台和3DOF机器人臂相符。
摘要 - 随着用户应用程序服务需求的进步,IoT系统倾向于将任务运送到边缘服务器以进行执行。当前关于流量边缘计算的大多数研究都忽略了应用程序综合之间的依赖关系。主要用于单用户场景中,主要用于应用拓扑拓扑的边缘计算的少数研究。与以前的工作不同,我们的工作主要解决了在多源场景中使用边缘计算弹出的依赖任务,这更符合现实。在本文中,将流量问题的依赖任务建模为马尔可夫决策过程(MDP)第一。然后,我们通过共同考虑,通过共同考虑几个用户之间的应用拓扑,并共同考虑了一个基于有向的无环图(DAG)的嵌入层的参与者 - 批评机制。最后,模拟的结果还显示了所提出的Aced算法的优先级。
动机:脑成像遗传学研究基因型数据(例如单核多态性(SNP)和成像定量性状(QTS))之间的复杂关联。神经退行性疾病通常表现出多样性和异质性,起源于该疾病,不同的诊断组可能会带有不同的成像QT,SNP及其相互作用。稀疏的规范相关分析(SCCA)被广泛用于识别双变量基因型 - 表型关联。然而,大多数现有的SCCA方法是无监督的,导致无法识别特定于诊断的基因型 - 表型关联。结果:在本文中,我们提出了一种名为MT – SCCALR的新联合多任务学习方法,该方法吸收了SCCA和逻辑回归的优点。MT – SCCALR共同学习多个任务的基因型 - 表型关联,每个任务都集中在识别一种诊断特定的基因型 - 表型模式上。同时,MT – SCCALR不仅可以为每个诊断组选择相关的SNP和成像QT,而且还允许将多个诊断组共享的SNP选择。我们得出了一种有效的优化算法,该算法可以保证其转化为局部最佳限度。与两种最先进的方法相比,MT – SCCALR产生更好或类似的规范相关系数和分类性能。此外,它拥有比竞争对手更好的判别规范权重模式。可用性和实施:该软件可在https://github.com/dulei323/mtsccalr上公开获得。这证明了MTSCCAR在识别诊断性异构基因型 - 表型模式方面的功能和能力,这将有助于了解脑疾病的病理生理学。联系人:dulei@nwpu.edu.cn或li.shen@pennmedicine.upenn.edu补充信息:补充数据可在Bioineformatics在线获得。
本研究探讨了利用其他培训数据作为在多语言,mul-titask食谱分类问题中生成模型的教学提示。通过将不同的任务分配为其他问题,仅在细调中可用的数据中得出,我们旨在提高所有涉及所有任务和语言的序列到序列模型的分类性能。更重要的是,我们调查了迅速工程对微调过程中其他问题的影响,从而在帮助模型学习任务之间的隐藏相互作用中揭示了其重要作用。所提出的方法在加权多限量准确性(在三个目标分类任务上)的绝对改善分别为2.3%,6.22%和10.7%。最有效的其他动作是从补充数据中得出的问题,而模型的规模以及我们是否执行内域预训练并不能显着改善最终绩效。Our find- ings also underline the importance of training data selection and questioning strategies, es- pecially in underrepresented languages, where we obtained an absolute increase in accuracy of 34.8% in the few-shot setting and 30.33% in the 0-shot setting for an underrepresented language in a difficult main task, together with an increase from 0% to 97% in F1-score for the most underrepresented class.
虽然大脑中的感觉表示取决于上下文,但尚不清楚如何在生物物理级别实现此类调制,以及如何在层次结构中进一步处理层可以为每个可能的contex-tum-tual状态提取有用的功能。在这里,我们证明了树突状n-甲基-D-天冬氨酸尖峰可以在生理约束中实施对馈送处理的上下文调节。这种神经元特定的调制措施利用了以稳定的馈电权重编码的先验知识,以实现跨环境的转移学习。在具有上下文独立的进发pefferward权重的生物物理逼真的神经元网络中,我们表明对树突分支的调节输入可以通过HEBBIAN,错误调查的学习规则解决线性不可分割的学习问题。我们还证明了表示表示的局部预测是源于不同输入的,还是来自相同输入的不同上下文调制,导致表示跨处理层的分层馈电权量的表示,以适应多种环境。