摘要:这项研究全面分析了2004年至2021年欧盟(EU)的有机农业的动态格局,研究了受不断发展的偏好和农民和消费者优先事项影响的专门农业地区的转变。检查社会经济因素的影响,包括人均国内生产总值(GDP),人类发展指数(HDI)和人口密度,这项研究建立了基于国家级别的分析,基于相关性,主要成分分析,集群分析和面板分析。尽管在研究期间,所有欧盟国家的有机农业地区都普遍增加,但生产水平与人口密度,人均GDP和HDI的负相关。值得注意的是,波罗的海国家和奥地利领导了有机农业生产,而马耳他,荷兰,比利时,爱尔兰和卢森堡则在人均有机农业较少的集群分析中形成了一个独特的群体。这些见解对于支持有机农业的韧性和可持续性至关重要。根据2004 - 2021年使用线性回归评估的趋势,对2030年有机农业份额的预测估计约占利用农业地区的12%,这远低于欧洲委员会的目标份额的25%。基于线性回归的预测表明,到2030年,在大多数欧盟国家,实现欧洲绿色交易的目标是25%的有机农业。目标只有在奥地利,爱沙尼亚和瑞典才能获得。欧盟国家在特征有机农业(包括有机农业地区份额)的各种指数中差异很大。应该指出的是,该研究是根据乌克兰战争爆发之前获得的数据进行的,这可能会改变欧盟有机农业发展的先前趋势。
add_residuals.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3每个_neon_tick_data。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 augment.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5代码。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6条件_weets.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7动态。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10 emplemble.mvgam_forecast。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 evaluate_mvgams。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 fevd.mvgam。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18拟合。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>19前载.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21公式。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 get_mvgam_priors。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 gp。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>30 gratia_mvgam_enhancements。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>31 Hindcast.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>36 How_TO_CITE.MVGAM。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>37索引-MVGAM。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>39 irf.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>39 JSDGAM。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>41 lfo_cv.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。49 loglik.mvgam。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。52 loo.mvgam。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。54 lv_corlations。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>56 mcmc_plot.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>57 Model.Frame.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>580单调。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>59 mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>62 MVGAM类。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>75 mvgam_diagnostics。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>77 mvgam_draws。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>78 mvgam_families。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>81 MVGAM_FEVD类。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>85 MVGAM_FORECAST类。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>85 div>
未来几十年,可再生能源的普及程度将进一步提高。这带来了新的挑战,因为风力涡轮机和太阳能电池板只有在有风和有阳光时才能发电。主要可再生能源的随机性意味着它们需要可靠和准确的预测才能正确整合。间歇性能源发电具有挑战性,因为它破坏了规划和运营能源系统的传统方法。可再生能源生产在多个时间尺度上变化和波动,迫使电网运营商调整其日前、小时前、分钟前和实时运营程序。因此,在可再生能源渗透率高的地区,如丹麦西部和德国北部的风力发电,需要在所有相关时间尺度上进行可靠的预测,以确保电力系统安全经济地运行。以斯堪的纳维亚地区为例,需要在不同时间范围内进行准确的风能和太阳能发电预测,以确保:
资金信息神经创伤慢性影响联盟,资助/奖励编号:PT108802-SC104835;国防和退伍军人脑损伤中心;荷兰国防部;汉森-托雷尔研究奖学金;医学研究与物资司令部;国家神经疾病和中风研究所,资助/奖励编号:R01NS086885,R01NS100973;国立卫生研究院,资助/奖励编号:U54 EB020403;美国国防部,资助/奖励编号:W81XWH-18-1-0413,W81XWH08-2-0159;美国退伍军人事务部,拨款/奖励编号:I01CX001820、I01CX002293、I01RX002174、I21RX001608、IK2RX002922-01A1
神经科学的最新进展强调了多模式医学数据在研究某些病理和了解人类认知方面的有效性。但是,获得一组不同的模态的完整集受到各种因素的限制,例如长期获取时间,高检查成本和伪影抑制。此外,神经影像数据的复杂性,高维度和异源性仍然是有效地利用现有随机扫描的另一个关键挑战,因为不同机器通常对相同方式的数据进行了不同的测量。显然需要超越传统成像依赖性过程,并从源中综合解剖学特定的目标模式数据。在本文中,我们建议学习使用新型CSCℓ4NET跨内部和模式内变化的专用特征。通过特征图和多元典范适应性中的模态数据的初始统一,CSCℓ4净4净促进了特征级别的相互转换。正定的riemannian歧管 - 惩罚数据限制项进一步使CSCℓ4NET可以根据变换的特征重新构建缺失测量值。最后,最大化ℓ4 -norm沸腾到计算上有效的优化问题。具有较大的实验可以验证我们的CSCℓ4NET的能力和鲁棒性与Multiple数据集中的最新方法相比。
具有缺失值的多变量时间序列在医疗保健和财务等领域很常见,并且多年来的数量和综合性已经增长。这提出了一个问题,是否可以在该领域中执行经典数据插补方法。然而,深度学习的幼稚应用在提供可靠的置信估计和缺乏可解释性方面缺乏。我们提出了一个新的深层连续变量模型,以减少维度和数据插补。我们的建模假设是简单且可解释的:高尺寸的时间序列具有较低的代数反应,该代态根据高斯过程在及时的及时演变而来。使用具有新型结构化变分近似的VAE方法实现了缺失数据的非线性维度降低。我们证明,我们的APS在计算机视觉和医疗保健领域的高维数据上胜过几种经典和深度学习的数据插补方法,同时增加了进化的平稳性,并提供了可解释的不良估计。
承认PQC安全二次多元规则可以创建最短的数字签名程序。回想一下,我们必须添加到上述PQC的两个方向上,基于哈希的密码学,基于亚速的加密和基于晶格的密码学。我们必须注意,所有已经由NIST认证的算法都不是多元密码学的公共钥匙。长期存在的'''''''''(Ruov)(RUOV)数字签名方法由于在Eurocrypt 2021年会议录中发表的隐次分析研究而被拒绝(Canteaut等人,2021年),(Buellens,2021年)。历史多元密码学是搜索形成二次或立方陷阱门加速器的种类(f,t),其中F是对矢量空间的二次(或立方)转换(F Q)N定义在有限的场上,T是一个多态度的内心转换器。一块信息,使T的知识允许在多项式时间内计算F的重像。开发人员希望在不了解T的情况下以其标准形式给出的F重新形象的恢复将作为未解决的NP - hard问题。回想一下,标准形式是f(x i),i = 1,2,…,n在词法上的单元列表。公共密钥(F,T)的二次变换可以提供最短的已知数字签名,这一事实正在激励进一步寻找适当的板门加速器。此搜索是由Imai和Matsumoto(Matsumoto等,1988)(另见(另见(Ding等,2020))在特征有限领域的情况下构建了陷阱门加速器2。他们使用有限场的二次扩展F 2 = f q,q = 2 m的特性2
基于数值天气预测模型多个运行的集合天气预报通常显示系统错误,需要后处理以获得可靠的预测。在许多实际应用中,对多元依赖性进行建模至关重要,并且已经提出了多种多元后处理方法,其中首先在每个边距中首先在每个边距中分别进行后处理,然后通过COPULAS恢复多元依赖性。这些两步方法具有共同的关键局限性,特别是在建模依赖项中包含其他预测因子的困难。我们提出了一种基于生成机器学习来应对这些挑战的新型多元后处理方法。在这类新的非参数数据驱动的分布回归模型中,来自多元预测分布的样本是直接作为生成神经网络的输出而获得的。生成模型是通过优化适当的评分规则来训练的,该规则衡量生成的数据和观察到的数据之间的差异,条件是外源输入变量。我们的方法不需要对单变量分布或多元依赖性的参数假设,并且允许对任意预测变量进行分配。在两个关于德国气象站的多元温度和风速预测的案例研究中,我们的生成模型对最先进的方法显示出显着改善,尤其是改善了空间依赖性的表示。
很大一部分晚期实体瘤具有潜在可治疗的基因组变异体(Fontes Jardim等,2015; Le Tourneau等,2015; Von Hoff等,2010),但实际上很少有癌症患者受益于基因组知识治疗(Marquart等人,2018年)。因此,通过更好的患者分层和疗法的患者设计,有很大的潜力可以改善对个别患者的治疗的使用和利益。精确癌症医学旨在根据每个患者疾病的详细分子表征来指导癌症患者治疗。一种快速获得关注的策略是离体癌症药物敏感性筛查,该策略预示着对癌细胞系和患者衍生细胞中一系列潜在疗法的反应,并确定与药物反应相关的分子特征。研究,药物替代性和分子(多词),数据都可以使用的研究通常称为药物研究。在本文中,我们采用具有高维输入矩阵的多元(多响应)回归设置来分析药物基因组学数据,其中几种药物的敏感性是响应变量,分子(多)OMICS变量是输入特征。我们分析了癌症(GDSC)数据库中药物敏感性基因组学的数据(Garnett等,2012; Yang等,2013),其中包含来自药物敏感性筛选的结果,用于代表数百种泛滥癌症的癌症药物的癌症药物的结果。
Heplots包装。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 AddShealth。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 5采用。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>3 AddShealth。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5采用。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7 arrow3d。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>8 Bartlettst。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10 Bobox3d。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。11蜜蜂。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12个盒子。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14个系数。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17个冷。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 covellipses。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 CQPLOT。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25 Cross3d。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 28 df.terms。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>25 Cross3d。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>28 df.terms。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>29个糖尿病。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 29狗食。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 31椭圆。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>29个糖尿病。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>29狗食。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>31椭圆。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。33 Elipse.box。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35 ellipse3d.axes。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。36椭圆形。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 Etasq。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 40 foothead。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 41 Glance.mlm。 。 。 。 。 。 。 。 。38 Etasq。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40 foothead。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41 Glance.mlm。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>43 GSORTH。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 44 44头痛。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>43 GSORTH。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>44 44头痛。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>45 HEPLOT。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 47 Heplot1d。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 54 HEPLOT3D。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。45 HEPLOT。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。47 Heplot1d。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。54 HEPLOT3D。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。54 HEPLOT3D。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。58疝气。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。62 Interplot。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。64 iwasaki_big_five。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。68 label.ellipse。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。70个levenetests。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。72 logdetci。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。73 Malalanobis。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 75 Mark.h0。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 76 MathScore。 。 。 。 。 。 。 。 。73 Malalanobis。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。75 Mark.h0。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 76 MathScore。 。 。 。 。 。 。 。 。75 Mark.h0。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。76 MathScore。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。78