全脑关联研究 (BWAS) 将个体的表型特征差异与大脑结构和功能的测量结果关联起来,在过去 30 年中已成为连接心智和大脑的主要方法。单变量 BWAS 通常分别测试数万到数十万个大脑体素,而多变量 BWAS 则将跨大脑区域的信号整合到预测模型中。单变量 BWAS 存在许多问题,包括缺乏能力和可靠性,以及无法解释分布式神经回路中嵌入的模式级信息 1–4 。多变量预测模型解决了许多这些问题,并为提供基于大脑的行为和临床状态及特征测量提供了巨大希望 2,3 。在他们最近的论文 4 中,Marek 等人在三个大型神经影像数据集中评估了样本量对单变量和多变量 BWAS 的影响,并得出“BWAS 的可重复性需要数千个个体的样本”的总体结论。我们赞赏他们的全面分析,并且我们同意:(1) 进行单变量 BWAS 时需要大量样本,(2) 多变量 BWAS 会显示出更大的效应,因此更有说服力。Marek 等人 4 发现,多变量 BWAS 提供的样本内关联被夸大了,除非纳入数千名参与者,否则通常无法复制(即没有说服力)。这意味着发现样本的效应大小估计必然被夸大了。然而,我们区分了效应大小估计方法(样本内与交叉验证)和样本(发现与复制),并表明,通过适当的交叉验证,Marek 等人 4 在发现样本中报告的样本内膨胀可以完全消除。通过额外的分析,我们证明,在某些情况下,高质量数据集中的多变量 BWAS 效应可以用小得多的样本量复制。具体而言,将标准多元预测算法应用于人类连接组计划中的功能连接,在 6 种表型中的 5 种测试样本量为 75-500 的情况下产生了可复制的效果(图 1)。这些分析仅限于相对高质量数据集中选定的表型数量(使用单个扫描仪在年轻成年人群中测量),不应过度概括。然而,他们强调,样本量要求的关键决定因素是大脑-表型关系的真实效应大小,并且通过适当的内部验证,可以对中等规模的研究进行适当的效应大小估计和足够大的效应。Marek 等人 4 通过在“发现样本”中训练各种多元模型来评估多元 BWAS 中的样本内效应大小膨胀
本课程涵盖了现代多元数据分析和统计学习的方法,包括其理论基础和实际应用。主题包括主要组成分析和其他缩小技术,分类(判别分析,最近的邻居分类器,逻辑回归,支持向量机器,决策树,集合方法,神经网络),聚类(K-Means,k-Means,基于层次的聚类,基于模型的方法,基于模型的方法,光谱群 - 倾向),图形的模型和某些基础模型和一些基础。目标是了解什么
描述多元时间序列的几种机器学习算法的实现。该软件包包括允许执行聚类,分类或异常检测方法等功能。它还结合了多元时间序列数据集的集合,该数据集可用于分析新提出的算法的性能。其中一些数据集存储在github数据软件包“ ueadata1'to“ ueadata8”中。要访问这些数据包,请运行'install.package(c('ueadata1','ueadata2','ueadata3','ueadata4','ueadata4','ueadata5','ueadata6',ueadata6','uea-- data7',ueadata8','ueadata8'),ueadata8'),repos =''安装需要几分钟,但我们强烈鼓励用户如果想拥有MLMTS的所有数据集,就可以这样做。来自各种领域的从业者可以从“ MLMTS”提供的一般框架中受益。
摘要背景:认知训练干预措施(CT)后的认知收益与精神分裂症患者(SCZ)的功能改善有关。但是,观察到很大的个体变异性。在这里,我们评估了大脑结构特征的敏感性,以在单个学科层面预测基于听觉的认知训练(ABCT)的功能响应。方法:我们使用支持向量机(SVM)建模的全脑多变量模式分析(MVPA)来识别灰质(GM)模式,这些模式(GM)模式预测了SCZ患者在单个受试者水平的ABCT 40小时后“较高”与“较低”功能。通过通过样本外跨验证分析(OOCV)应用原始模型来评估SVM模型的概括能力,以从经历了50个小时的ABCT的独立样本中看不见的SCZ患者。结果:全脑GM体积的模式分类预测,在随访时预测了“较高”与“较低”功能,其平衡精度(BAC)为69.4%(灵敏度为72.2%,特异性66.7%),通过嵌套交叉验证确定。神经解剖模型可推广到一个独立队列的BAC为62.1%(灵敏度为90.9%,特异性为33.3%)。结论:尤其是,在SCZ参与者ABCT之后,单个受试者水平的颞上回,丘脑,前扣带回和小脑的区域中的基线GM体积更大。
对耦合和因果关系的时间和频域度量的评估依赖于线性多元过程的参数表示。时间序列之间时间依赖性的研究基于矢量自回旋模型的识别。通过通过普通最小二乘(OLS)估计器解决的回归问题的定义来实现此过程。但是,其准确性受到数据点不足的强烈影响,并且并不能保证稳定的解决方案。要克服这个问题,可以使用受惩罚的回归技术。这项工作的目的是将OLS的行为与不同实验条件下连通性分析的不同惩罚回归方法进行比较。偏见,用于此目的的网络结构重建和计算时间的重建精度。通过模拟数据在不同量的可用数据示例中实现不同的地面真实网络的模拟数据测试了不同的惩罚回归。然后,将方法应用于从执行运动成像任务的健康志愿者中记录的真实脑电图信号(EEG)。惩罚的回归优于仿真设置中的OLS。实际脑电图数据上的应用程序显示了如何使用从大脑网络中提取的功能,即使在数据匮乏的条件下,也可以在两个任务之间进行分解。惩罚回归技术可用于大脑连通性估计,并且可以根据线性假设克服经典OLS施加的局限性来计算所有连接性估计器。
摘要。在本文中,我们介绍了Indmask,这是一个框架,用于解释Black-Box时间序列模型的决策。存在大量用于提供机器学习模型解释的方法时,时间序列数据需要其他考虑。一个人需要考虑解释中的时间方面,并处理大量输入功能。最近的工作提出了通过在In-In-In-Time序列上产生面具来解释时间序列预测的。掩码中的每个条目对应于每个时间步骤的每个功能的重要性得分。但是,这些方法仅生成实例解释,这意味着需要对每个输入进行分别计算掩码,从而使它们不适合归纳设置,在这种情况下,需要为众多输入生成解释,并且实例解释的生成非常严重。此外,这些方法主要是在简单的复发性神经网络上评估的,通常仅适用于特定的下游任务。我们提出的框架IndMask通过利用掩码生成的参数化模型来解决这些问题。我们还超越了经常性的神经网络,并将indmask部署到变压器体系结构上,从而真正地阐明了其模型 - 不合Snostic的性质。通过对现实世界数据集和时间序列分类和预测任务的实验进一步证明了indmask的有效性。它也是有效的,并且可以与任何时间序列模型一起部署。
在物理耦合的人机系统研究中,共生的概念被越来越多地提及。然而,对于人机共生的构成方面,却缺乏统一的规范。通过结合不同学科的专业知识,我们阐述了共生作为物理耦合人机系统最高形式的多元视角。共生涉及四个维度:任务、交互、性能和体验。首先,人与机器共同完成一项共同任务,该任务在决策和行动层面上概念化(任务维度)。其次,每个合作伙伴都拥有自己以及其他合作伙伴的意图和对环境的影响的内部表征。这种一致性是互动的核心,构成了双方之间的共生理解,是联合、高度协调和有效行动的基础(互动维度)。第三,共生互动会在合作伙伴的意图识别和互补优势方面产生协同效应,从而提高整体绩效(绩效维度)。第四,共生系统特别改变了用户的体验,如心流、接受度、主体感和体现(体验维度)。这种多元视角灵活而通用,也适用于各种人机场景,有助于弥合不同学科之间的障碍。
在本文中,我们开发了一个新的多元分布,该分布适用于计数数据,称为树p´olya拆分。该类是由沿固定分区树的单变量分布和单数多变量分布的组合而产生的。已知的分布,包括Dirichlet-Multinomial,广义的Dirichlet-Multinomial和Dirichlet-Tree多项式,是此类中的特殊情况。正如我们将要证明的那样,这些分布是灵活的,可以在观测水平上建模复杂的依赖性结构(正,负或空)。具体来说,我们通过主要关注边缘分布,段落矩和依赖性结构(协方差和相关性)来介绍树p´olya分裂分布的理论特性。A dataset of abundance of Trichoptera is used, on one hand, as a benchmark to illustrate the theoretical properties developed in this article, and on the other hand, to demonstrate the interest of these types of models, notably by comparing them to other approaches for fitting multivariate data, such as the Poisson-lognormal model in ecology or singular multivariate distributions used in microbiome.
在数据科学和机器学习的不断发展的景观中,时间序列建模的领域已成为一个重要且挑战性的研究领域。时间序列数据及其独特的时间依赖性和顺序模式,在金融,医疗保健和气候科学等各个领域中找到了应用[1,2,3]。时间序列的准确建模对于创建强大的模型和理解复杂系统至关重要。建模时间序列的一种方法是通过生成模型[4],该模型在异常检测[5]和数据增强[6]中具有实际应用。在本文中,我们提出了一种基于时间序列生成和建模的神经SDE的新颖方法。尤其是,我们旨在创建一个可以利用默顿模型[3]作为跳跃框架的模型,该模型可以考虑实际市场的跳跃。归一化流是具有易生化密度估计的生成模型家族。主要思想是通过组成几个函数f i将初始复杂的数据分散分散转换为一个简单的想法。有一些
中风后失语症的人倾向于在某种程度上恢复其语言;但是,可靠地预测长期将发生的恢复的性质和程度仍然充满挑战。这项研究的目的是定量预测语言结果的第一年,从多个语言的多个领域和中风后多个时间点恢复。我们招募了217名失语症患者,急性左半球缺血或出血性中风,并使用快速的Aphinia电池急性电池评估了他们的语音和语言功能,然后在势利点最多获得纵向后续数据,最多三个时间点:1个月(n = 102)(n = 102),3个月(n = 98)(n = 98)(n = 98)和1年(n = 74)(n = 74)。我们使用支持矢量回归来使用急性临床成像数据,人口统计学变量和初始失语症的严重程度作为输入来预测每个时间点的语言结果。我们发现,可以使用这些模型来预测长期(1年)失语症的60%的差异,并具有有关病变位置的详细信息,重要的是有助于这些预测。在1个月和3个月的时间点上的预测基于病变位置的准确性较小,但在模型中包括初始APHA SIA的严重性时,在1年时间点的预测中达到了可比的准确性。语言的特定子域除了总体严重程度外,还具有不同的准确性,但通常相似的准确性。我们的发现证明了使用支持矢量回归模型具有带有一方面的交叉验证的可行性,以对长期恢复失语症进行个性化预测,并提供有价值的神经解剖基线,以在此基准上建立未来模型,并将未来的模型纳入超出神经解剖学和人际预测因素以外的信息。