对耦合和因果关系的时间和频域度量的评估依赖于线性多元过程的参数表示。时间序列之间时间依赖性的研究基于矢量自回旋模型的识别。通过通过普通最小二乘(OLS)估计器解决的回归问题的定义来实现此过程。但是,其准确性受到数据点不足的强烈影响,并且并不能保证稳定的解决方案。要克服这个问题,可以使用受惩罚的回归技术。这项工作的目的是将OLS的行为与不同实验条件下连通性分析的不同惩罚回归方法进行比较。偏见,用于此目的的网络结构重建和计算时间的重建精度。通过模拟数据在不同量的可用数据示例中实现不同的地面真实网络的模拟数据测试了不同的惩罚回归。然后,将方法应用于从执行运动成像任务的健康志愿者中记录的真实脑电图信号(EEG)。惩罚的回归优于仿真设置中的OLS。实际脑电图数据上的应用程序显示了如何使用从大脑网络中提取的功能,即使在数据匮乏的条件下,也可以在两个任务之间进行分解。惩罚回归技术可用于大脑连通性估计,并且可以根据线性假设克服经典OLS施加的局限性来计算所有连接性估计器。
主要关键词