脂质纳米粒子 (LNP) 已成功进入临床,用于递送基于 mRNA 和 siRNA 的治疗方法,最近又被用作 COVID-19 疫苗。然而,人们对其在体内的行为,特别是细胞靶向性缺乏了解。LNP 的向性部分基于内源性蛋白质对粒子表面的粘附。这种蛋白质形成所谓的冠,可以改变这些粒子的循环时间、生物分布和细胞摄取等。反过来,这种蛋白质冠的形成取决于纳米粒子的特性(例如大小、电荷、表面化学和疏水性)以及它所来源的生物环境。由于基因治疗有可能针对几乎任何疾病,因此人们正在考虑除静脉途径之外的其他给药部位,从而产生组织特异性蛋白质冠。对于神经系统疾病,颅内注射 LNPs 会产生脑脊液衍生的蛋白质冠,与静脉注射相比,这可能会改变脂质纳米颗粒的性质。在这里,我们在体外研究了临床相关的 LNP 制剂中血浆和脑脊液衍生的蛋白质冠之间的差异。蛋白质分析表明,在人脑脊液中孵育的 LNPs (C-LNPs) 产生的蛋白质冠组成与在血浆中孵育的 LNPs (P-LNPs) 不同。脂蛋白作为一个整体,特别是载脂蛋白 E,在 C-LNPs 上占总蛋白质冠的百分比高于 P-LNPs。这导致与 P-LNPs 相比,C-LNPs 的细胞摄取有所改善,无论细胞来源如何。重要的是,更高的 LNP 摄取量并不直接转化为更有效的货物输送,强调有必要进一步评估此类机制。这些发现表明,生物流体特异性蛋白质冠会改变 LNP 的功能,这表明给药部位可能会影响 LNP 在体内的功效,并且需要在配方开发过程中加以考虑。
复合材料是多组分系统,其功能由其成分之间的相互作用决定。化合物的均匀性取决于材料、材料之间的相互作用和合成,并对性能产生重大影响。纳米粒子已被证明可以通过降低界面张力变成表面活性剂来促进不混溶液体的混合 [ 1 ],并可能导致不混溶和可混溶聚合物溶液之间的可逆转变。将磁性纳米粒子添加到分子铁电体中可以合成多铁性材料 [ 2 – 4 ]。尽管自旋交叉复合物本身可以形成纳米粒子 [ 5 – 7 ],但将磁性纳米粒子添加到自旋交叉分子中的研究很少。 [Fe(Htrz) 2 (trz)](BF 4 )(Htrz = 1H-1,2,4-三唑,trz − = 去质子化三唑配体)[7 – 12]就是这样一种自旋交叉复合物,它也已与纳米粒子结合[13, 14]。[Fe(Htrz) 2 (trz)](BF 4 )的特点是自旋态随温度变化而转变,从而引起电导率的变化[9, 15 – 19]。这种特定分子的自旋交叉转变温度通常为 (340–360) K,在接近室温时产生自旋态双稳态[8 – 12, 15 – 20]。通过添加聚苯胺 (PANI) [ 19 , 21 ] 或聚吡咯 [ 21 , 22 ],所得均质复合材料的导通电阻可降低至 < 1 Ω · cm,从而使更小的分子器件成为可能 [ 23 ],而不会因高阻抗而导致长延迟时间。为了了解自旋交叉复合物中自旋态间双稳态协同效应的修改 [ 24 ],已经采用了多种技术 [ 25 – 27 ]。虽然用金属取代 [Fe(Htrz) 2 (trz)](BF 4 ) 中的 Fe 会降低电导率 [ 18 ],但添加 Fe 3 O 4 等金属纳米颗粒可以通过驱动形态变化完全避免此问题。充分利用此类多组分系统的潜力以及由于添加纳米颗粒而产生的修改需要
可打印的光学活性材料有限,需要定制的墨水配方。为了解决功能材料的有限可用性用于光电设备的喷墨制造,需要探索适用于具有不同组成的纳米颗粒的多功能墨水配方策略。这还将为在单个设备中探索多个纳米颗粒的探索新机会,以达到特定的光谱敏感性。在这里,我们开发了GQD的可打印墨水公式,nay-f 4:(20%yb和/或2%ER掺杂)UCNPS和PBS QDS Inks,并展示了它们用于基于石墨烯的光电探测器和荧光显示器等设备。通过开发和优化墨水配方,打印策略和沉积技术,以可控的方式沉积了光敏的纳米材料层,并将其集成到印刷的异质结构中。我们通过将其用作单层石墨烯(SLG)光电材料中的表面函数化层来体现纳米材料墨水制剂的潜力,其中可以实现r b 10 3 a w 1的光反应率,并且可以从gqd/slg到nir/slg和slg和slg dep dep dep and slg and slg和ppb and slg和pbs slg和pbs slg slg and slg slg和pps。我们还探索了多个墨水的沉积到一个结构中,说明可以产生诸如荧光显示器之类的设备,因为我们在此处使用CSPBBR 3 Perovskite NCS和UCNP喷墨印刷在柔性透明底物上。这项工作扩展了可打印的光活性纳米材料的材料库,并展示了其前瞻性用于印刷光电材料(包括柔性设备)。
三阴性乳腺癌 (TNBC) 是一种侵袭性乳腺癌亚型,其特征是缺乏激素受体和 HER2 表达,导致治疗选择有限且患者预后不佳。本研究探索了一种新的治疗方法,即使用装载有 siXBP1 并与表皮生长因子受体 (EGFR) 抗体结合的 PLGA 脂质纳米粒子。这种纳米载体将沉默 XBP1 基因,这对于 TNBC 的进展和生存至关重要,尤其是在缺氧条件下。纳米粒子与 EGFR 抗体的结合提高了它们对 TNBC 细胞的靶向能力,这已通过共聚焦显微镜和流式细胞术证实。靶向纳米粒子的荧光强度比非靶向纳米粒子高 1.45 倍。这些纳米粒子有效地将 siRNA 递送到 TNBC 细胞,导致 XBP1 基因沉默效率显著提高 75%。在缺氧条件下,这种基因沉默效应显著促进了细胞凋亡,与常氧条件相比,细胞凋亡率几乎增加了三倍。这些发现为 TNBC 的靶向治疗提供了宝贵的见解,并为进一步的体内研究铺平了道路,以推动这种方法走向临床应用。
摘要 :由于相关优势,合成氧化钴纳米粒子 (Co3O4-NPs) 的绿色技术如今比其他方法更受青睐。本研究中的 Co3O4-NPs 是利用菠萝废皮和氯化钴 (Ⅱ) 作为钴源生成的。使用傅里叶变换光谱 (FTIR)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、能量色散 X 射线光谱 (EDX)、紫外分光光度计等几种方法对生成的 NPs 进行分析。已确定生成的 Co3O4-NPs 对抗革兰氏阳性菌具有抗菌性能,并通过琼脂孔扩散法发现其对枯草芽孢杆菌 (B.subtilis) 具有活性。这种新创建的绿色合成技术对环境无害,可以取代 Co NPs 的物理和化学过程。
金属有机框架(MOF)是具有不同,可调功能,高孔隙率和表面积的创新多孔材料,使它们有望在气体存储,分离和催化应用中使用。此外,它们的衍生物还补偿了MOF缺乏电子电导率和化学稳定性,为精确控制材料结构提供了新的最佳选择。已经基于MOF创建了许多有效的电催化剂,它们的衍生物是对金属空气电池中的O2降低/进化过程和二氧化碳的降低/进化反应。在这篇综述中,我们重点介绍了金属电池中MOF及其衍生物的最新发展,并探讨了这些材料的结构特性及其各自的作用模式。通过彻底审查MOF的收益,问题和前景,我们可以更好地了解电催化和能源储能技术的未来发展。
f ront m保持火星与纳米颗粒保持温暖的可行性:与纳米颗粒加热火星的可行性作者Samaneh Ansari 1,Edwin S. Kite S. Kite 2,*,Ramses Ramses Ramirez 3,Liam J. Steele J. Steele 2,4,Hoomani Mohseni 1。西北大学电气和计算机工程系;伊利诺伊州埃文斯顿。2。芝加哥大学地球物理科学系;伊利诺伊州芝加哥。 3。 中央佛罗里达大学物理系;佛罗里达州奥兰多。 4。 欧洲中等天气预报中心;英国雷丁。 *通讯作者,kite@uchicago.edu摘要摘要火星表面的三分之一已经浅了h 2 o,但目前太冷了,无法生存。 使用温室气体对火星温暖的建议需要大量在火星表面上很少见的成分。 但是,我们在这里表明,由火星易于获得的材料制成的人造气溶胶(例如,长约9μm的导电纳米棒)可以使火星> 5×10 3倍3倍3倍的火星比最佳气体高> 5×10 3倍。 这种纳米颗粒向前散射的阳光,有效地阻止了上升的热红外。 类似于火星的自然灰尘,它们被高高地扫入火星的气氛中,从而使近地面传递。 在10年的粒子寿命中,两个气候模型表明,在30升/秒的持续释放将在全球范围内升高30 K,并开始融化冰。 因此,如果可以按(或传递到火星)进行大规模制造纳米颗粒,则火星变暖的障碍似乎不如先前想象的那么高。芝加哥大学地球物理科学系;伊利诺伊州芝加哥。3。中央佛罗里达大学物理系;佛罗里达州奥兰多。4。欧洲中等天气预报中心;英国雷丁。*通讯作者,kite@uchicago.edu摘要摘要火星表面的三分之一已经浅了h 2 o,但目前太冷了,无法生存。使用温室气体对火星温暖的建议需要大量在火星表面上很少见的成分。但是,我们在这里表明,由火星易于获得的材料制成的人造气溶胶(例如,长约9μm的导电纳米棒)可以使火星> 5×10 3倍3倍3倍的火星比最佳气体高> 5×10 3倍。这种纳米颗粒向前散射的阳光,有效地阻止了上升的热红外。类似于火星的自然灰尘,它们被高高地扫入火星的气氛中,从而使近地面传递。在10年的粒子寿命中,两个气候模型表明,在30升/秒的持续释放将在全球范围内升高30 K,并开始融化冰。因此,如果可以按(或传递到火星)进行大规模制造纳米颗粒,则火星变暖的障碍似乎不如先前想象的那么高。带有人造气溶胶的预告变暖火星似乎是可行的。主文本简介。干燥的河谷越过火星曾经可持续的表面(1,2),但今天冰冷的土壤太冷了,无法获得地球衍生的寿命(3-5)。流可能到600 kyr(6),这暗示着一个行星在可居住性的风口浪尖上。通过关闭围绕波长(λ)22 µm和10 µm的频谱窗口,已经提出了许多方法来加热火星表面,通过该窗口,通过热红外辐射上升到空间(7-9),表面通过热红外辐射冷却。Modern Mars具有薄(〜6 MBAR)的CO 2大气,在15 µM带中仅提供约5 K温室的温暖(10),而火星显然缺乏足够的冷凝或矿化CO 2来恢复温暖的气候(11)。可以使用人工温室气体关闭光谱窗口(例如
摘要 简介:了解纳米粒子与肝脏之间的相互作用对于开发安全有效的纳米药物至关重要。由于肝脏的主要吞噬作用,肝脏可以隔离高达 99% 的纳米粒子,因此了解这些相互作用对于临床转化至关重要。 涵盖的领域:本综述重点介绍了纳米粒子-肝脏相互作用的最新研究,包括纳米粒子的物理化学性质对输送的影响、通过调节肝脏库普弗细胞来提高输送效率的策略,以及它们治疗某些肝脏疾病的潜力。此外,我们还讨论了衰老如何影响肝脏的吞噬功能。 专家意见:虽然肝脏积累会妨碍纳米药物的安全性和有效性,但也为治疗某些肝脏疾病提供了机会。彻底了解纳米粒子-肝脏相互作用对于推进纳米药物的临床应用至关重要。
c物理系,巴凡恩的Vivekananda科学,人文与商业学院,海得拉巴,Telangana,Telangana,500094,印度D,D d diveabhapatnam,Vishakhapatnam,Andhra Pradesh 530045,印度,印度纳米型纳米级液压型载体的使用,自1960年代以来,但是对于表面活性剂浓度,对结构和磁性的关注很少。本文研究了表面活性剂十二烷基硫酸钠(SDS)浓度对钴铁酸盐(COFE 2 O 4)纳米颗粒的影响,该纳米颗粒是在250°C和500°C的退火温度下通过反向胶束制备的。对SDS比率变化的样品(CO:SDS = 1:0.33,1:0.5,1:0.66)进行了XRD,TGA,TEM,FTIR和VSM研究。所有样品表现出单相尖晶石结构,晶体直径范围为10至18 nm。随着SDS浓度的增加,晶体的尺寸减小。TEM图像显示粒径在7.6 -17.7 nm的范围内。VSM调查显示样品的铁磁行为。相同浓度相对于退火温度相对于退火温度,观察到的增加反映了纳米颗粒的单域性质。这强调了退火条件在定制钴铁岩纳米颗粒中的关键作用,作为在纵向磁记录介质中的合适应用。(2024年3月26日收到; 2024年6月7日接受)关键词:钴与SDS比,粒径,反向胶束,十二烷基硫酸钠1.引言铁氧体磁性纳米颗粒一直是其广泛应用的最深入研究和研究的材料之一,包括铁氟烷基技术,磁性冷冻,磁共振成像(MRI),高密度记录,Spintronics,spintronics,抗肿瘤药物,抗肿瘤药物输送,磁性超热和其他[1-4]。钴铁氧体纳米颗粒由于其混合尖晶石结构而引起了很多兴趣,其中包含晶格中A和B位点的二价钴阳离子和三价铁阳离子[5]。钴铁氧体(COFE 2 O 4)具有显着的物理和机械性能,并且具有异常稳定和电绝缘性[6,7]。这些特殊特征使钴铁岩成为广泛医疗应用的可行竞争者[8]。合成铁氧体纳米颗粒的各种方法的目标是匹配其特征,例如粒度和分布,形状,团聚程度和粒子组成程度与特定应用。控制这些质量使您可以在各种应用中提高纳米颗粒的性能,包括磁数据存储,生物成像,催化和环境清理。sol-gel [9],共沉淀[10],微乳液[11]和其他流行的方法,它们具有其优点和局限性。
摘要 人们对纳米技术、电磁学和光学领域的最新进展越来越感兴趣,也越来越感兴趣。这种跨学科合作涵盖了纳米材料、纳米电子学和纳米生物技术等领域,这些领域的应用往往有重叠。一个备受关注的领域是金属纳米粒子 (MNP) 的使用,它已在医学领域取得了显著的进步。MNP 有望显著提高药物输送效率、减少不良副作用并提高输送精度。它们还可用于诊断、生物相容性材料的开发和营养保健品的探索。在药物输送中使用金属纳米粒子具有提高稳定性、延长循环时间、增强分布和精确靶向等好处。纳米生物技术领域促进了生产 MNP 的环保方法(称为绿色合成)的创建。MNP 在药物输送中提供了更好的稳定性和靶向释放,同时也提供了一种比化学合成更可持续的替代方案。本综述旨在探讨 MNP 在药物输送中的应用挑战和前景,特别关注制造和修饰金属纳米载体的可持续方法。本综述还探讨了各种 MNP 在药物输送系统 (DDS) 中的应用。