这项研究提出了一种通过使用水热合成的铁(Fe)和钛(Fe)和钛(Ti)离子掺杂的方法来增强氧化锶(SRO)纳米颗粒(NP)的光催化特性。使用各种光谱和微观技术来表征材料,以确保对其结构和组成的准确分析。对甲基橙色染料降解的AS合成材料的光催化效率,在90分钟内使用3%掺杂材料在90分钟内取消了约98%。发现降解效率取决于几个因素,包括pH,初始染料浓度和催化剂剂量。最佳条件被确定为pH值为4,初始染料浓度为20 mg/L,催化剂剂量为150 mg。这些发现表明,Fe/Ti编码的SRO纳米颗粒在环境清理过程中的应用中具有很大的潜力,尤其是在有机污染物的降解中。该研究提供了对掺杂纳米颗粒在光催化中的合成和应用的宝贵见解,突出了它们的效率以及优化反应条件以最大程度地提高性能的重要性。
化学杀虫剂的环境和人类健康风险已引发了广泛的搜索,以保护储存产品的替代方法。最近,纳米颗粒被认为是合成化学产品的有希望的替代品。在这项研究中,使用cystoseira baccata藻类提取物合成ZnO纳米颗粒(NP),并使用X射线衍射(XRD),傅立叶变换红外(FTIR)和场发射扫描电子显微镜(FE-SEM)进行表征。使用两种不同方法合成了三种不同类型的ZnO NP,ZnO-A,ZnO-B和ZnO-C。对其杀虫活性进行了评估,并将其与化学合成的ZnO-D NPS相对于cow虫象鼻虫,callosobruchus maculatus(F.)(鞘翅目:Chrysomelidae)在储存的cow虫上进行了比较。生物合成的ZnO-A,ZnO-B和ZnO-C NPs对Maculatus的活性较高。确定粒径最小(24.3 nm)的多孔ZnO-A NP是最毒性的纳米颗粒,导致五天后的Maculatus成人死亡率最高。虽然ZnO-D NP是Maculatus C. C. C. c. c. c. c. nps的有效性最低。明显的产卵抑制(35.1至44.9%)和后代还原(35.7至
纳米颗粒有望用于药物输送应用,并具有多种临床批准的产品。但是,在实体瘤中获得高纳米颗粒的积累仍然具有挑战性。在这里我们表明,肿瘤细胞衍生的小细胞外囊泡(SEV)将纳米颗粒递送到肿瘤,揭示了基于纳米颗粒的肿瘤疗法的另一个障碍。肿瘤细胞在肿瘤微环境中分泌大量的SEV,然后结合进入肿瘤组织的纳米颗粒并将其传递到肝库普弗细胞中以降解。敲低Rab27a是一种控制SEV分泌的基因,可降低SEV水平并改善肿瘤组织中纳米颗粒的积累。与Rab27a在脂质纳米颗粒中共同包裹的抑制肿瘤和炎性蛋白质的信使RNA的治疗功效大大提高。一起,我们的结果表明,肿瘤细胞衍生的SEV是针对纳米颗粒肿瘤递送的防御系统,并且该系统可能是改善基于纳米颗粒的肿瘤疗法的潜在靶标。
n-羧基氢气开环聚合诱导的自组装(NCA ROPISA)为单一步骤产生基于聚(氨基酸)的纳米颗粒的便利途径,至关重要地避免了对聚合后自组装的需求。大多数NCA Ropisa的例子都利用了聚(乙二醇)(PEG)亲水性稳定块,但是这种不可生物降解的油源性聚合物可能会在某些个体中引起免疫反应。因此,高度寻求替代水溶性聚合物。这项工作报告了通过与L-苯基丙氨酸-NCA(L-PHE-NCA)和Alanine-NCA(ALA-NCA)(通过含有的NCA Ropisa)的链链延伸的链链延伸,该纳米颗粒的合成。所得的聚合结构主要由各向异性,棒状纳米颗粒组成,形态学主要受疏水聚(氨基酸)的二级结构的影响,从而实现其形成。
火星表面的三分之一具有较浅的H 2 O,但目前太冷了,无法生命。使用温室气体对火星温暖的建议需要大量在火星表面上很少见的成分。但是,我们在这里表明,由火星上容易获得的材料制成的人造气溶胶(例如,长度约为9微米的导电纳米棒)可以使火星> 5×10 3的温暖> 5×10 3时间比最佳气体有效。这种纳米颗粒向前散射的阳光,有效地阻止了上升的热红外。就像火星的自然灰尘一样,它们被高高地扫入火星的气氛中,从近地表中传递。在10年的颗粒寿命中,两个气候模型表明,以每秒30升的持续释放将在全球范围内升温30 kelvin,并开始融化冰。因此,如果可以按比例(或传递到火星)进行大规模制造纳米颗粒,则火星变暖的障碍似乎比以前想象的要高。
纳米颗粒在纳米技术领域起着至关重要的作用,由于其表面积归因于其小尺寸,因此提供了不同的特性。中,银纳米颗粒(AGNP)由于其抗菌特性而引起了极大的关注,其应用可以追溯到古老的药用实践到包含离子或银纳米颗粒的当代商业产品。agnps除了与某些抗生素结合使用时表现出协同作用,还具有针对细菌,真菌,病毒和分枝杆菌的广谱杀生物潜力。其抗菌作用的机制包括产生氧气反应性物种,对DNA的损伤,细菌细胞膜破裂和抑制蛋白质合成。最近的研究强调了AGNP通过对抗抗生素耐药性病原体的潜力来对各种临床相关的细菌菌株的有效性。本综述研究了AGNP发挥其抗菌作用的蛋白质组学机制,特别着眼于它们针对浮游细菌和生物膜中的活性。此外,它讨论了AGNP的生物医学应用及其对抗生素制剂的潜在不准备,还解决了对抗生素耐药性的问题。
纳米技术在各个科学领域都提供了许多优势。纳米技术的最新进展已证明,纳米颗粒在医疗应用中具有巨大的潜力。纳米科学和纳米技术的最新进展从根本上改变了我们诊断,治疗和预防人类生活各个方面的各种疾病的方式。本综述提供了纳米颗粒(NP)的合成,属性和应用的详细概述,以不同的形式存在。nps很小且小,范围为1至100 nm。他们根据其属性,形状或大小将其分类为不同的类。不同的组包括富勒烯,金属NP,陶瓷NP和聚合物NP。NP由于其高表面积和纳米级尺寸而具有独特的物理和化学特性。银纳米颗粒(AGNP)是与生物医学应用有关的几种金属纳米颗粒中最重要,最迷人的纳米材料之一。AGNP在纳米科学和纳米技术中起着重要作用,尤其是在纳米医学中。银纳米颗粒在医疗领域的主要应用包括诊断应用和治疗应用,除了其抗菌活性。
单基因血液病是全球最常见的遗传性疾病之一。这些疾病导致严重的儿童和成人发病率,有些甚至会导致出生前死亡。新型体外造血干细胞 (HSC) 基因编辑疗法有望改变治疗格局,但并非没有潜在的局限性。体内基因编辑疗法为这些疾病提供了一种潜在更安全、更易于获得的治疗方法,但由于缺乏针对 HSC 的递送载体而受到阻碍,而 HSC 位于难以接近的骨髓微环境内。在这里,我们提出,可以通过利用胎儿发育过程中易于接近的肝脏中的 HSC 来克服这种生物障碍。为了促进基因编辑货物向胎儿 HSC 的递送,我们开发了一种可电离的脂质纳米颗粒 (LNP) 平台,靶向 HSC 表面的 CD45 受体。在体外验证靶向 LNP 通过 CD45 特异性机制改善信使核糖核酸 (mRNA) 向造血谱系细胞的递送后,我们证明该平台在多种小鼠模型中介导体内安全、有效和长期的 HSC 基因调节。我们进一步在体外优化了该 LNP 平台,以封装和递送基于 CRISPR 的核酸货物。最后,我们表明,优化和靶向的 LNP 在单次宫内静脉注射后增强了胎儿 HSC 中概念验证位点的基因编辑。通过在胎儿发育期间体内靶向 HSC,我们系统优化的靶向编辑机制 (STEM) LNP 可能提供一种可转化的策略来治疗出生前的单基因血液疾病。
作为一种使用紫外线以高空间分辨率和表面质量逐层固定光聚合物的技术,立体光刻(SLA)允许精确的过程控制和优化各种紫外线可策展的聚合物及其纳米复合材料,并具有各种纳米颗粒。在这项研究中,通过SLA技术在抗菌应用中添加不同含量的硝酸银含量,制备了紫外线可策展的聚合物纳米复合材料。在SLA过程中实现了AGNP的原位合成,没有任何其他治疗方法。 研究了Agno 3添加对树脂固化和纳米复合标本的机械性能的影响。 了解纳米复合样品的断裂机理,通过SEM评估样品的断裂表面,并通过EDX评估了纳米复合材料的AGNO 3含量。 含有0.3 wt的纳米复合材料。 %agno 3表现出改善的机械性能。 将Agno 3含量进一步增加到3 wt。 %导致聚合物纳米复合材料的物理和机械性能恶化。在SLA过程中实现了AGNP的原位合成,没有任何其他治疗方法。研究了Agno 3添加对树脂固化和纳米复合标本的机械性能的影响。了解纳米复合样品的断裂机理,通过SEM评估样品的断裂表面,并通过EDX评估了纳米复合材料的AGNO 3含量。含有0.3 wt的纳米复合材料。%agno 3表现出改善的机械性能。将Agno 3含量进一步增加到3 wt。%导致聚合物纳米复合材料的物理和机械性能恶化。
