摘要:免疫检查点阻滞策略提高了晚期肺癌患者的存活率。但是,低免疫应答率限制了免疫疗法的效率。在这里,我们报告了基于Fe 3 O 4的反应性纳米颗粒,该纳米颗粒在肿瘤微环境中经过电荷逆转和拆卸,从而增强了肿瘤细胞对Fe 3 O 4的摄取,并触发了更严重的螺旋病。在肿瘤微环境中,纳米颗粒迅速组装并释放负载的GOX和在过表达H 2 O 2下的免疫激活肽塔夫蛋白。GOX可以消耗肿瘤细胞的葡萄糖并产生更多的H 2 O 2,从而促进纳米颗粒和药物释放的拆卸,从而增强铁凋亡的治疗作用。与塔夫蛋白结合在一起,可以更有效地扭转免疫抑制的微环境并促进肿瘤组织中效应T细胞的募集。最终与α-PD-L1结合,对肺转移的生长有显着抑制。此外,超极化的129 XE方法已用于评估Fe 3 O 4纳米粒子介导的免疫疗法,其中随着完整的肺结构和功能,肺转移中的通风缺陷已得到显着改善。通过非辐射评估甲基疗法铺平了一种新型的癌症治疗疗法的新方法。
资助信息国立卫生研究院,资助/奖励编号:DP2 TR002776;美国国立卫生研究院(NIH)主任新创新者奖;Burroughs Wellcome Fund 科学界面职业奖(CASI);美国癌症协会,资助/奖励编号:RSG-22-122-01-ET;NSF CAREER 奖,资助/奖励编号:CBET- 2145491;NIH 国家牙科和颅面研究所(NIDCR)奖励编号,资助/奖励编号:T90DE030854;宾夕法尼亚大学创新和精准牙科中心(CiPD);国家科学基金会 (NSF) 研究生研究奖学金,资助/奖励编号:1845298;NIH NHLBI F30 奖学金,资助/奖励编号:F30HL162465-01A1; NSF 重大研究仪器项目,资助/奖励编号:NSF CHE-1827457;Vagelos 能源科学与技术研究所
以前的作品发现,与单个粒径相比,辐射冷却油漆的多个纳米颗粒大小会增加太阳反射率。在这项研究中,我们通过结合MIE理论,蒙特卡洛模拟和机器学习方法来评估这一发现,以识别BASO 4和TIO 2-丙烯酸丙烯酸辐射冷却油漆中最佳粒径组合。我们发现,最佳的多个粒径确实超过了Tio 2油漆中最佳的单尺寸,但与Baso 4油漆中的最佳单尺寸相比,表现不佳。这是由于Baso 4在太阳光谱上的接近恒定折射率所致。此外,只要平均粒径在300 - 600 nm附近,不同的粒径分布也会产生类似的高太阳反射率。考虑到精确生产单个粒径是不可行的,我们得出结论,多种粒径的真正好处是它们可以实现具有成本效益的制造,同时保留了强大的高性能。
将小鼠分组(n=4),在右后腿肌肉注射HBsAg、HBsAg/Al或HBsAg/HPLNP(w/w=1/600)制剂,剂量为1 µg HBsAg/只小鼠。肌肉注射后,在12、24、48和72小时通过体内成像系统FX Pro(Kodak)采集注射部位的荧光图。在不同时间点获得各组小鼠注射部位的平均荧光强度图。肌肉注射后,在12、24、48和72小时采集肠系膜淋巴结的荧光信号。计算不同组别的注射部位和肠系膜淋巴结的平均荧光强度,以比较各种疫苗制剂在抗原储存效应和淋巴结引流方面的效果。2.9 淋巴结中淋巴细胞的激活
图 1 – DCFHP 设计和验证。(A) DCFHP 示意图以红色显示了将 S∆C-Fer 转化为 DCFHP 所做的修改。受体结合域 (RBD)、N 端域 (NTD)、S1/S2 切割位点、S2' 切割位点、融合肽 (FP)、七肽重复 1 (HR1),如注释所示。(B) SDS-PAGE 凝胶显示纯化的 DCFHP 以单体形式运行,分子量达到预期的 kDa(梯形图,左侧显示)。(C) 从 SEC-MALS 确定的 UV(黄色)和光散射(灰色)轨迹显示了均匀的纳米颗粒峰,其近似分子量(虚线)为 3.4MDa。(D) DCFHP 的 3D 重建低温电子显微镜密度图,采用八面体对称性细化。 (E) 用 S∆C-Fer 或 DCHFP(由 500 µg 明矾和 20 µg CpG 1826 配制)免疫小鼠后,第 21 天血清对武汉-1 SARS-CoV-2 假病毒具有类似的强效中和作用,单次免疫后即可达到。在表达 ACE2 和 TMPRSS2 的 HeLa 细胞系中评估中和滴度。10 只小鼠的数据以几何平均滴度和标准差表示。测定定量限 (LOQ) 显示为虚线水平线。
甘露糖基化的LNP,分别包含2%,4.85%或9.3%的甘露糖偶联的PA-PEG脂质),通过∆ΔCT方法计算得出,标准化为cramble载荷的LNP对照。数据通过Shapiro-Wilk测试正态分布。通过Tukey的多重比较测试通过单向方差分析进行统计分析。b)与9.3-MLNP相比,在5nm,5nm或100nm miR-146a的9.3-MLNP递送后,AM中的剂量依赖性miR-146a水平。数据通过Shapiro-Wilk测试正态分布。通过单向方差分析分析了Tukey的多重比较测试。c)在存在或不存在20 mM甘露糖的情况下,使用LNP或9.3-MLNP递送miR-146a后AM中的miR-146a水平。通过Kruskal-Wallis分析了Dunn的多重比较测试。统计差异表示为 *p <0.05,** p <0.005,*** p <0.001。数据以最大最小为单位表示。显示所有点,n =每组3井。进行了两次实验。
图2:3D PDAC片段模型的开发。a。微流体芯片Identx3,AimBiotech TM的示意图。B.碎屑上胶原蛋白中癌细胞播种的示意图,随后的球体形成。C. PDAC肿瘤球体从单细胞(D0)与芯片上胶原蛋白成熟7天后发育的明亮场显微镜图像(D0)(D7)。比例尺= 100µm。d-f。 Live/Dead Assay的共聚焦显微镜图像(死=红色; Live = Green),带有(d)3D堆栈的Z-Procotity,在第8天芯片,(E-F)3D共聚焦堆栈重建。比例尺= 100µm。g-i。第二次谐波生成(SHG)显微镜图像肿瘤球体(绿色),周围的胶原基质(红色)3D堆栈(G)的Z-Proctions(g),重建了3D图像(H-I)。比例尺= 50µm。
Antoine Dowek,Marion Berge,Patrice Prognon,François-Xavier Legrand,Eric Larquet,Eric Larquet等。通过表面增强红色纳米粒子悬架的Raman光谱,对去甲肾上腺素和肾上腺素进行了分解和定量分析。分析和生物分析化学,2021,414(2),pp.1163-1176。10.1007/S00216-021-03743-4。hal-04664781
1 阮必成大学应用技术与可持续发展研究所,胡志明市 700000,越南 2 阮必成大学环境与食品工程学院,胡志明市 700000,越南 3 维新大学研究与发展研究所高级化学中心,03 光忠,岘港 550000,越南 4 维新大学自然科学学院,03 光忠,岘港 550000,越南 5 胡志明市工业大学化学工程学院,胡志明市 700000,越南 6 胡志明市医药大学药学院,胡志明市 700000,越南 * 通信地址:tavy@ntt.edu.vn (VAT);vongoclinhgiang@uphcm.edu.vn (GNLV);电话:+84-028-39404043(增值税)
纳米颗粒药物输送系统已成为治疗中枢神经系统疾病的尖端方法。本综述讨论了利用纳米颗粒将药物递送到大脑方面的进步和机会,重点是增强功效,降低副作用并改善患者结果的潜力。基于脂质的纳米载体,例如脂质体,固体脂质纳米颗粒(SLN)和胶束,在神经系统条件下广泛使用。对治疗神经退行性疾病的创新药物递送方法的需求不断增长,例如帕金森氏症和阿尔茨海默氏症,这在很大程度上是由于血液脑屏障和p-糖蛋白的潜在治疗失败,这会导致脑功能逐渐逐渐丧失。纳米技术的进步可以通过改善活跃的医学运动的交付并创建改善主动药物输送的纳米材料来帮助克服这些局限性。