荧光纳米颗粒(NP)已证明在生物分析和生物成像中使用了吸引力。1,2与传统的分子标签相比,NP可以具有许多优势,包括高度提高亮度和增强的光稳定性。NP的另一个关键优势是,发射材料受到保护,免受使光学特性对复杂生物学环境不敏感的环境。通常,NP在生物系统中也显示出低倾向或定位的倾向。受这些潜在优势的动机,已经报道了许多不同类型的纳米颗粒。以非常一般的方式,可以将它们分为基于无机的或有机的,其中无机NP在早期就更具统治性。无机纳米颗粒中有许多变化3,4,包括众所周知的量子点(QDS)5 - 8和UpConversion NP。9,10荧光NP,其中来自有机分子和材料的吸收和发射茎包括基于分子染料(纯或嵌入在基质材料中)的NPS,11种共轭聚合物,12,13和无态碳材料(碳核心)。14,15
摘要 目前,人们普遍认为使用多功能纳米药物进行图像引导药物输送是一种有效治疗癌症和其他疾病的方法。在本研究中,我们评估了载有吲哚菁绿 (ICG) 和紫杉醇 (PTX) 的人血清白蛋白 (HSA) 纳米粒子与透明质酸结合用于针对 CD44 阳性非小细胞肺癌 (NSCLC) 的图像引导药物输送的潜力。使用蛋白质印迹分析和 qRT-PCR 评估了一系列 NSCLC 细胞系的 CD44 表达,并与正常肺成纤维细胞系 (MRC-5) 进行了比较。使用荧光显微镜和光声成像 (PA),我们探索了这些靶向纳米粒子与 MRC-5 相比选择性地在 NSCLC 细胞系中积累的能力以及它们在生物医学成像方面用于治疗诊断应用的潜力。结果表明这些靶向纳米粒子在 NSCLC 的成像和治疗方面具有应用潜力。
人工智能(AI)的应用有可能彻底改变纳米医学的配方发展。这项研究研究了通过乳化 - 散热过程产生的孕激素负载固体脂质纳米颗粒(PG-SLN)的物理化学特征,重点是通过设计实验设计(DOE)和人造神经网络(ANN)(ANN)来证明这种受控制备方法的有效性。关键质量因素,包括硬脂酸,中链甘油三酸酯(MCT),pluronic F-127和丙烯乙二醇(PG)的量,使用DOE来简化实验设置。硬脂酸的浓度被鉴定为影响PG-SLN物理化学特性的关键因素,影响粒径(PS),多分散指数(PDI),ZETA电位(ZP)和%药物载荷(%DL)。确定了PS,PDI,ZP和%DL的最佳条件。 DOE揭示了多个运行的可接受值,ANN模型表现出高度的预测准确性,超过了响应表面方法(RSM)。 测试了选定的PG-SLN配方透皮药物的递送,与PG悬浮液相比,渗透率得到了改善。 用柠檬烯加载进一步增强了透皮药物的递送,这归因于林烯作为穿透性增强剂的作用。 此外,发现所选的PG-SLN配方对神经元细胞是安全且无毒的。 提出了DOE和ANN的组合来增强预测能力。 这项研究强调了PG-SLN在透皮药物递送中的潜力,强调了柠檬烯是一种安全有效的增强剂。确定了PS,PDI,ZP和%DL的最佳条件。DOE揭示了多个运行的可接受值,ANN模型表现出高度的预测准确性,超过了响应表面方法(RSM)。测试了选定的PG-SLN配方透皮药物的递送,与PG悬浮液相比,渗透率得到了改善。用柠檬烯加载进一步增强了透皮药物的递送,这归因于林烯作为穿透性增强剂的作用。此外,发现所选的PG-SLN配方对神经元细胞是安全且无毒的。提出了DOE和ANN的组合来增强预测能力。这项研究强调了PG-SLN在透皮药物递送中的潜力,强调了柠檬烯是一种安全有效的增强剂。这项研究有助于对在药物和生物医学领域应用AI工具的兴趣日益增长的兴趣,以改善预测性建模。
1 美国宾夕法尼亚州费城宾夕法尼亚大学工程与应用科学学院生物工程系,2 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院系统药理学和转化治疗学系,3 美国加利福尼亚州萨克拉门托加利福尼亚大学戴维斯分校神经病学和神经外科系,4 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院神经外科系,5 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院医学系、肺部过敏和重症监护科,6 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院神经病学系
2 优化合成核酸和蛋白质纳米载体:化学进化方法 ...................................................................................................... 16
诊疗纳米粒子 (NPs) 具有通过提供个性化医疗大幅改善癌症管理的潜力。无机 NPs 因其独特的物理化学性质(包括磁性、热学和催化性能)以及通过功能性表面改性或组分掺杂剂(例如成像和药物控制释放)而产生的优异功能,引起了学术界和工业界的广泛兴趣。到目前为止,只有有限数量的无机 NPs 被应用于临床实践。本综述重点介绍了无机 NPs 在乳腺癌治疗中的最新进展。我们相信,本综述可以为研究和开发无机 NPs 作为有前途的化合物提供各种方法,以期在未来的应用前景中应用于乳腺癌治疗和材料科学。
近年来,基于微流体的纳米级药物输送系统已在精密纳米医学领域的突出。这一有趣的创新可以在严重疾病作为创伤性脑损伤的治疗中提供独特的治疗前景,这是一种潜在的致命疾病,在儿童时期很普遍。根据当前的科学研究,神经营养蛋白对于损伤的脑实质的愈合至关重要,尤其是脑衍生的神经营养因子(BDNF)可能具有显着的再生作用。为了解决与BDNF相关的药代动力学约束,进行了微流体辅助的BDNF负载固体脂质脂质纳米颗粒(BDNF-SLNS)的制造,并进行了评估后,配方表明,配方表明了最佳特征(190.3±10.1 nm),0.1 nm),pdi(0.1 nm),pdi(0.1 nm),0.180±0.180 @ - 优势( - 39.2±1.30 mV)。短期稳定性研究和溶血测定法验证了配方的生物相容性,而体外通透性分析显示,与9.31x10-6 cm/s相比,相比,包裹的BDNF(1.27x10 - 5 cm/s)的PAPP增加了。与普通的BDNF相比,使用BDNF-SLNS的基因产生和NOS mRNA水平的下降表明,与普通BDNF相比,降低了降低,从而证实了微富集型药物递送系统的熟练程度,作为先验和有价值的生物递送方法。
摘要:使用X射线衍射(ZNONP)和合成的ZnO/精氨酸/酪氨酸/酪氨酸纳米复合材料(ZAT)的合成合成的ZnO纳米粒子(ZnONPS)(ZAT),使用X射线衍射(XRD),傅立叶衍射(XRD),傅立叶变换(FTIR)光谱(FTIR)光谱,扫描电子显微镜(SEM),EDRAREN MICROSCOPY(SEM),RECTER(SEM),RESCERES(SEM),RESCERIVES(SEMREX),RESCERIVES(SEMREX)群集(启用元件盒零件盒零件盒)荧光(XRF),动态光散射(DLS)和Brunauer-Emmett-Teller(BET)分析。使用电位动力学极化(PDP),电化学阻抗光谱(EIS),重量分析和原子吸收光谱(AAS)研究了ZnONP和ZAT在1 M HCl中的腐蚀抑制疗效。XRD分析表明,Znonps和Zat是晶体的,平均结晶石尺寸分别等于28.57 nm和32.65 nm。从DLS分析中发现,ZnONP和ZAT的流体动力大小分别为34.99 d.nm和36.57 d.nm。XRF确认Znonps的合成和证实的XRD,FTIR和EDX结果。PDP分析表明,Znonps和Zat显示出混合型抑制剂倾向。 腐蚀电流密度(ICORR)在存在ZnONP和ZAT的情况下降低,在每个抑制剂的1000 ppm存在下,抑制效率分别为92.4%和98.5%。 电荷转移电阻值在存在抑制剂的情况下降低,这表明在碳钢表面形成保护膜。 电化学分析结果与重量法和AAS分析结果一致。PDP分析表明,Znonps和Zat显示出混合型抑制剂倾向。腐蚀电流密度(ICORR)在存在ZnONP和ZAT的情况下降低,在每个抑制剂的1000 ppm存在下,抑制效率分别为92.4%和98.5%。电荷转移电阻值在存在抑制剂的情况下降低,这表明在碳钢表面形成保护膜。电化学分析结果与重量法和AAS分析结果一致。
超顺磁性铁氧化铁纳米颗粒(SPION)是纳米医学中有希望的进步,在诊断和治疗应用中都表现出巨大的潜力。它们可以在磁场中磁化,并且不会显示永久性磁化,从而可以在体内精确定位。在交替的磁场下,SPION会产生热量,可用于针对癌症的磁性高温治疗或触发药物释放。诊断,它们被广泛用作磁共振成像(MRI)的对比剂,而磁性粒子成像(MPI)是一种使用SPIONS作为示踪剂的新兴临床前诊断技术。尽管有这些有希望的应用,但SPION的临床实用性受到与可扩展和可再现制造有关的挑战的阻碍。还需要集中精力来改善MPI解决方案。此外,磁性高温用于治疗炎症和感染性疾病的应用仍然相对不受影响。因此,本论文的主要目的是开发针对通过可扩展的制造技术进行成像和治疗炎症和感染性疾病的SPION。研究的第一部分涉及系统综述,以检查有关使用SPION用于诊断和治疗慢性炎症性疾病的最相关研究。MRI被确定为SPION的主要应用。然而,分别对MPI和磁性高温进行成像和治疗炎症性疾病的探索有限。spions与抗炎药Celecoxib一起掺入片剂中。在第二个项目中,使用设计方法基于风险的药物质量来优化磁性高温的SPION。在第三个项目中系统地研究了纳米颗粒性质对MPI性能的影响。此外,这些项目还将火焰喷射热解作为一种可扩展且可重复的技术,用于将纳米颗粒合成具有复杂化学计量的纳米颗粒,用于磁性高温和MPI。在研究的最后一部分中,通过可扩展技术将SPION纳入复合材料,以改善炎症和传染病的治疗。药物溶解度通过磁性高温诱导的原位非晶化显着提高。也将SPION纳入超细纤维中,并将磁性超纤维的热量耗散与强力霉素对抗耐甲氧西林的金黄色葡萄球菌。与单独使用该药物相比,这导致细菌生长大幅降低。本论文引入了对SPION特性及其功能性能的系统探索,为其生产建立了可扩展的合成技术,并开发了新型系统,以更广泛地适应生物医学应用中的SPION。
超顺磁性氧化铁纳米粒子 (SPION) 是纳米医学领域一项有希望的进展,在诊断和治疗应用中都表现出巨大的潜力。它们可以在磁场中磁化,并且不会显示永久磁化,从而可以在体内精确定位。在交变磁场下,SPION 会产生热量,可用于抗癌磁热疗或触发药物释放。在诊断方面,它们被广泛用作磁共振成像 (MRI) 的造影剂,而磁粒子成像 (MPI) 是一种使用 SPION 作为示踪剂的新兴临床前诊断技术。尽管有这些有希望的应用,但 SPION 的临床实用性受到与可扩展和可重复制造相关的挑战的阻碍。还需要集中精力提高 MPI 分辨率。此外,磁热疗在治疗炎症和感染性疾病中的应用仍然相对未被充分探索。因此,本论文的主要目标是通过可扩展的制造技术开发专门用于炎症和感染性疾病成像和治疗的 SPION。研究的第一部分涉及系统回顾,以检查有关使用 SPION 诊断和治疗慢性炎症疾病的最相关研究。MRI 被确定为 SPION 的主要应用。然而,对 MPI 和磁热疗分别用于成像和治疗炎症疾病的探索有限。在第二个项目中,使用基于风险的药品质量设计方法来优化用于磁热疗的 SPION。在第三个项目中,系统地研究了纳米粒子特性对 MPI 性能的影响。此外,这些项目建立了火焰喷雾热解作为一种可扩展和可重复的技术,用于合成具有复杂化学计量的纳米粒子用于磁热疗和 MPI。在研究的最后部分,通过可扩展技术将 SPION 整合到复合材料中,以改善炎症和传染病的治疗。SPION 与抗炎药塞来昔布一起被整合到片剂中。通过磁热诱导原位非晶化,药物溶解度显著提高。SPION 也被整合到微纤维中,磁性微纤维的散热作用与强力霉素一起用于对抗耐甲氧西林金黄色葡萄球菌。与单独使用药物相比,这显著减少了细菌生长。本论文介绍了 SPION 特性及其功能性能的系统探索,建立了一种可扩展的合成技术,并开发了新系统,使 SPION 更广泛地适应生物医学应用。