摘要:基于纳米粒子的肿瘤靶向治疗是生物医学领域的热门研究方向。经过几十年的研究和发展,无论是纳米粒子固有属性的被动靶向能力,还是基于配体受体相互作用的主动靶向能力都得到了更深入的认识。遗憾的是,大多数靶向递送策略仍处于临床前试验阶段,需要进一步研究粒子在体内的生物命运以及与肿瘤的相互作用机制。本文综述了基于纳米粒子的不同靶向递送策略,重点介绍了纳米粒子的理化性质(尺寸、形貌、表面和内在性质)、配体(结合数量/力、活性和种类)和受体(内吞、分布和循环)等影响粒子靶向性的因素,进一步讨论了这些因素的局限性及其解决方法,并介绍了多种新型靶向方案,希望为未来的靶向设计提供指导,实现靶向粒子快速转化为临床应用的目的。
治疗药物的有效和特定于现场的递送仍然是癌症治疗中的一个至关重要的挑战。传统的药物纳米载体(例如抗体 - 药物缀合物)通常由于成本高而无法使用,并且可能导致严重的侧面影响,包括威胁生命的过敏反应。在这里,通过使用创新的双重印迹方法制造的超分子代理的工程来克服这些问题。开发的分子印刷纳米颗粒(纳米虫)的目标是雌激素受体Alfa(ER 𝜶)的线性表位,并用化学治疗药物阿霉素加载。这些纳米纳米具有成本效率和竞争性的ER 𝜶商业抗体的功能。在大多数乳腺癌(BCS)中过表达的材料与ER 𝜶的特定结合后,通过受体介导的内吞作用实现核药物的递送。因此,在过表达ER 𝜶的BC细胞系中引起了显着增强的细胞毒性,为BC的精确治疗铺平了道路。通过在复杂的三维(3D)癌症模型中评估其药物效应的临床使用概念概念,该模型捕获了体内肿瘤微环境的复杂性而无需动物模型。因此,这些发现突出了纳米元作为一种有希望的新型药物化合物用于癌症治疗的潜力。
摘要:纳米囊化已成为药物输送,增强稳定性,生物利用度以及使受控的,有针对性物质递送到特定细胞或组织的最新进展。但是,传统的纳米颗粒交付面临诸如短期流通时间和免疫识别之类的挑战。为了解决这些问题,已建议将细胞膜包被的纳米颗粒作为实际替代方法。生产过程涉及三个主要阶段:细胞裂解和膜破碎,膜分离和纳米颗粒涂层。细胞膜通常使用均匀化或超声处理的低渗裂解来碎片。随后的膜片段通过多个离心步骤隔离。可以通过挤出,超声处理或两种方法组合来实现涂层纳米颗粒。值得注意的是,该分析揭示了缺乏普遍适用的纳米颗粒涂层方法,因为这三个阶段的程序在其程序上有显着差异。本综述探讨了当前的开发和细胞膜包裹的纳米颗粒的方法,强调了它们作为靶向药物递送和各种治疗应用的有效替代方案的潜力。
完整的作者清单:伊丽莎白的杰吉斯;俄亥俄州立大学,William G. Lowrie化学与生物分子工程系De Araujo Fernandes Jr.,Silvio;俄亥俄州立大学,William G. Lowrie化学与生物分子工程系;俄亥俄州立大学病理学系和医学院神经研究所;俄亥俄州立大学通过工程和科学研究(CCE-CURES)CUI,YIXIAO治愈癌症;俄亥俄州立大学,生物医学工程罗宾斯,阿里尔;俄亥俄州立大学,物理学;俄亥俄州立大学,生物物理学计划,卡洛斯卡斯特罗;俄亥俄州立大学,机械和航空工程;俄亥俄州立大学,生物物理学计划Poirier,迈克尔;俄亥俄州立大学,物理学;俄亥俄州立大学,生物物理学计划Gurcan,Metin; Wake Forest医学院生物医学信息学中心Otero,Jose;俄亥俄州立大学病理学系和医学院神经研究所;俄亥俄州立大学通过工程和科学研究(CCE-CURES)冬季治愈癌症;俄亥俄州立大学,William G. Lowrie化学与生物分子工程系;俄亥俄州立大学,生物医学工程;俄亥俄州立大学通过工程和科学研究(CCE-CURES)治愈癌症;俄亥俄州立大学生物物理学计划
摘要 结直肠癌 (CRC) 是全球第三大最常见的癌症类型,在癌症相关死亡人数中排名第二。就目前的治疗方法而言,尚未提出一种明确、安全且有效的 CRC 治疗方法。然而,新的药物输送系统在这一领域显示出良好的前景。基于两亲性环糊精的纳米载体是一种创新且有趣的制剂方法,可通过口服给药靶向结肠。在我们之前的研究中,旨在对结肠肿瘤进行口服化疗,并通过配方开发研究、粘蛋白相互作用、粘液渗透、细胞毒性和二维细胞培养中的渗透性,以及在早期和晚期结肠癌模型中的体内抗肿瘤和抗转移功效以及单剂量口服给药后的生物分布获得了有希望的结果。本研究旨在进一步阐明口服喜树碱 (CPT) 负载两亲性环糊精纳米粒子在局部治疗结直肠肿瘤方面的药物释放行为和在三维肿瘤模型中的功效,以预测不同纳米载体的体内功效。主要目的是在配方开发与体外阶段和动物研究之间架起一座桥梁。在这种情况下,CPT 负载的聚阳离子-β-环糊精纳米粒子分别导致小鼠和人类 CT26 和 HT29 结肠癌球体肿瘤细胞活力降低。此外,首次通过释放动力学模型对释放曲线(新型药物输送系统中关键质量参数之一)进行了数学研究。总体研究结果表明,通过带正电荷的聚-β-CD-C6 纳米粒子将抗癌药物(如 CPT)口服靶向至结肠肿瘤以实现局部和/或全身疗效的策略是一种很有前途的方法。
图 2:MnAs x Sb 1-x(x = 0.1 - 0.8)纳米粒子的 PXRD 图案,以 Si 标准为标准。Si 的峰值以星号显示(MnSb-PDF#-03-065-0388)
该研究使用各种技术(如发芽、烹饪、高压灭菌和微波)调查了 60ppm 银纳米粒子 (AgNPs) 对红芸豆的影响。与未处理的生样品相比,用银纳米粒子处理的样品的成分发生了变化,蛋白质、脂肪和碳水化合物含量发生了显著变化。在用银纳米粒子处理的发芽豆中观察到最高的总酚含量 1.59 mg 没食子酸/g、黄酮类化合物含量 445.2 mg 儿茶素和抗氧化活性 89.0%。胰蛋白酶抑制剂含量范围为 0.04 至 2.83 mg/g,在生豆中观察到最高值,在用银纳米粒子处理的发芽豆中观察到最低值。单宁含量从 0.40 到 1.26 mg/g 不等,植酸含量范围从 1.09 到 4.18 mg/g,在 GA 处理的豆中含量最低。生豆中的含量最高。此外,成像分析显示,用 AgNPs 处理过的豆子表面结构发生了明显变化。发芽的豆子显示 AgNPs 粘附或穿透种皮,从而改变了表面形态。煮熟的豆子表面显示 AgNPs 聚集,表明加热后分布发生了变化。微波处理的豆子显示出微波诱导效应,可能由于局部加热导致 AgNPs 分布不均匀和簇形成。高压灭菌会引起豆子的结构变化,AgNPs 与表面相互作用形成聚集体或沉积物。而用 AgNPs 处理豆子会导致 FTIR 光谱图发生变化,例如峰位置或强度发生变化,或者某些波段出现或消失。
基因医学具有巨大潜力,可以精准治疗多种人类疾病的根本原因,但该领域历来因递送这一核心挑战而受阻。纳米粒子是一种与天然病毒大小相同的工程构造,其设计目的是为了更接近地模拟病毒的递送效率,同时具有安全性更高、载货灵活性更高、靶向性更强和制造更简便等优势。非病毒基因转移纳米粒子在临床上取得进展的速度正在加快,FDA 最近批准了多种非病毒核酸递送纳米粒子配方的临床验证,用于表达和沉默基因。虽然大部分进展来自脂质纳米粒子配方,但其他用于基因转移的纳米材料也取得了重大进展,具有生物降解性、可扩展性和细胞靶向性等优点。本综述重点介绍了该领域的现状、目前在递送方面面临的挑战以及工程纳米材料应对这些挑战的机会,包括实现长期治疗性基因编辑。讨论了利用不同类型的纳米材料和不同载体进行基因转移(DNA、mRNA 和核糖核蛋白)的递送技术。介绍了临床应用,包括用于治疗囊性纤维化等遗传疾病。
工程纳米材料在改善疾病诊断和治疗特异性方面具有重要前景。纳米技术可以通过细胞特异性靶向、分子运输到特定细胞器和其他方法,帮助克服传统递送的局限性——从大规模问题(如生物分布)到小规模障碍(如细胞内运输)。为了促进这些有前景的纳米技术的实现和临床转化,美国国家科学技术委员会 (NSTC) 于 2000 年启动了国家纳米技术计划 (NNI),并概述了该领域的明确计划和重大挑战 1 。这些计划支持了最近研究和改进纳米技术的努力,其中纳米颗粒 (NPs) 占报告研究和进步的很大一部分。NPs 有可能提高封装货物的稳定性和溶解度,促进跨膜运输并延长循环时间以提高安全性和有效性 2、3 。由于这些原因,NP 研究得到了广泛关注,并在体外和小动物模型中产生了有希望的结果 4 。然而,尽管 NNI 推动了广泛的研究,但可供患者使用的纳米药物数量仍大大低于该领域的预期,部分原因是
摘要。乳腺癌是全球女性发病率和死亡率最高的最常见癌症类型。最近改善当前抗肿瘤疗法的努力导致基于使用纳米技术的治疗性非编码RNA(NCRNA)的提供,从而开发了新的治疗方法。使用基于脂质的纳米颗粒(LBNP)的治疗方法已大大提高了NCRNA对肿瘤细胞和组织的递送效率。这种类型的递送方法具有显着优势,例如降低的治疗剂量,对正常细胞的细胞毒性降低以及逆转化疗的能力。lbnps已经证明了提供治疗性NCRNA,更具体的microRNA(miRNA)和小的干扰RNA(siRNA)的能力;据报道,这调节了参与多种生物学过程的癌基因和肿瘤抑制基因的表达水平,包括细胞生长和增殖,细胞死亡,侵袭和转移,从而损害了肿瘤的恶性行为。因此,基于NCRNA的疗法与LBNP递送策略相结合,即纳米肌,可能代表一种有前途的抗肿瘤策略,可确保出色的生物相容性,较高的生物治疗能力,较低的免疫原性和对正常细胞的毒性降低,与其他治疗方法相比。本评论总结了当前对LBNP在乳腺癌细胞和小鼠模型中传递miRNA和siRNA的应用的知识,此外还讨论了它们有希望的抗肿瘤作用。